

 AFRL-RW-EG-TR-2011-159

 BASIC DETONATION PHYSICS ALGORITHMS

Douglas V. Nance

AFRL/RWPC

101 W. Eglin Blvd.
Eglin AFB, FL 32542-6810

December 2011

INTERIM REPORT

AIR FORCE RESEARCH LABORATORY
MUNITIONS DIRECTORATE

  Air Force Materiel Command
Force MaterialCommand

 United States Air Force  Eglin Air Force Base, FL 32542

DISTRIBUTION A. Approved for public release, distribution unlimited. 96
th
 ABW/PA

Approval and Clearance # 96ABW-2011-0548 dated 28 November 2011.

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation, or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 96th Air Base Wing, Public Affairs Office, and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense
Technical Information Center (DTIC) < http://www.dtic.mil/dtic/index/html>.

AFRL-RW-EG-TR-2011- HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION
IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

______________________________________ _____________________________________
Craig M. Ewing, DR-IV, PhD Douglas V. Nance
Technical Adviser Program Manager
Strategic Planning and Assessment Division

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

159

ORIGINAL SIGNED ORIGINAL SIGNED

Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

01-12-2011 INTERIM 01-10-2011 - 31-10-2011

Basic Detonation Physics Algorithms N/A

N/A

62602F

2502

67

63

Douglas V. Nance

AFRL/RWPC
101 W. Eglin Blvd.
Eglin AFB, FL 32542-6810

AFRL-RW-EG-TR-2011-159

AFRL/RWPC
101 W. Eglin Blvd.
Eglin AFB, FL 32542-6810

AFRL-RW-EG

AFRL-RW-EG-TR-2011-159

Distribution A: Approved for public release, distribution unlimited. (96ABW-2011-0548)
28 Nov 11

NONE

This report presents the theory behind a series of detonation physics algorithms used to simulate the detonation of a condensed
explosive. The numerical scheme implemented in this case is the Roe flux difference splitting scheme due to Glaister. This report
contains a detailed discussion of the mathematical derivation along with a printing of the source code. We also include a discussion
of methods for implementing Lagrangian tracking algorithms for solid inclusions within the condensed explosive.

detonation, explosive, flux, jacobian

UNCLAS UNCLAS UNCLAS UL 102

Douglas V. Nance

Reset

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
i

TABLE OF CONTENTS

Section Page
1 INTRODUCTION 1

 1.0 Numerical Detonation Physics 1
 1.1 A Map for this Report 2

2 GOVERNING EQUATIONS 4

 2.1 The Reactive Euler Equations 4
 2.2 Mixture Equations of State 5
 2.3 Solid Explosive Equations of State 6
 2.4 Detonation Products Equation of State 8

3 SYSTEM EIGEN-STRUCTURE 10

 3.1 Flux Jacobian Matrices 10
 3.2 Eigenvalues 12
 3.3 Eigenvectors 13

4 BUILDING THE NUMERICAL SCHEME 18

 4.1 Pressure Derivatives 18
 4.2 Finite Volume Discretization 21
 4.3 Temporal Discretization 22
 4.4 The Numerical Flux 23
 4.5 A Higher Order Scheme 25
 4.6 Boundary Conditions 27

5 PARTICLE MOTION 28

 5.1 Coupling Terms 28
 5.2 Particle Laws of Motion 29

6 RESULTS 32

 6.1 Simple Plane Wave Detonation 32
 6.2 Detonation of Pure HMX 35
 6.3 Detonation of HMX Containing Metal Particles 37

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
ii

7 CONCLUSIONS 39

8 RECOMMENDATIONS 39

REFERENCES 40

APP. A SOURCE CODE 42

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)
iii

LIST OF FIGURES

Figure Page

1 Interface Notation 23

2 Problem 1 Detonation Field Density, Time 3.0 33

3 Problem 1 Detonation Field Velocity, Time 3.0 33

4 Problem 1 Detonation Field Pressure, Time 3.0 34

5 Problem 1 Detonation Field Reaction Progress Variable, Time 3.0 34

6 Numerical Detonation Solution Hayes-I/JWL in HMX at 3 μs. Horizontal Axis
 is Distance in Meters 36

7 Numerical Detonation Solution Hayes-II/JWL in HMX at 3 μs. Horizontal Axis
 is Distance in Meters 36

8 Radial Locations for Steel Particles Embedded in a Mass of Detonating HMX 37

9 Radial Velocities for Steel Particles Embedded in a Detonating Mass of HMX 38

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

1 INTRODUCTION

 Steady increases in large scale circuit integration indicate that the Twenty-First
Century will promise significant advances in High Performance Computing (HPC)
machinery. Today, one may obtain desk-side Linux systems containing eight processors
(and thirty-two or more cores) for comparatively reasonable prices. Moreover, common
laptop systems wield significant computing power with central processing unit (CPU)
speeds in the neighborhood of 3.0 GHz (maybe more by the time this report is certified)
and random access memory (RAM) storage capability in hundreds of Gigabytes (GB). In
the realm of “Big Iron”, the Department of Defense (DoD) High Performance Computing
(HPC) Modernization Office recently began operating clusters each with tens of
thousands of cores, and the Department of Energy laboratory community has even larger
systems. These developments have significant implications for the relatively small
Computational Physics research community. This research community represented by
disciplines such as high energy physics, quantum chemistry and computational fluid
dynamics has an ever increasing need for computer memory and for parallel processing
speed.

 Computational Fluid Dynamics (CFD) has drawn on HPC resources for many
years to help with aircraft and fluid system design. Some problems like high Reynolds
number direct numerical simulations are still computationally inaccessible, but these
situations are fewer in number than just one decade ago. For instance, we routinely solve
problems involving the large eddy simulation (LES) of compressible turbulence with
good results. Older techniques such as Reynolds-Averaged Navier-Stokes (RANS)
simulation now teeter on the brink of obsolescence. Moreover, massive computing power
now permits us to invade new territory previously relegated to analytical solutions
supported by many assumptions and highly simplified, under-resolved computational
studies. Quantum physics now benefits widely from HPC science in the areas of quantum
chemistry and molecular dynamics. These areas of physics now impact design
engineering. Although it occupies only a very small part of the research community,
detonation physics, a close relative of CFD, can benefit handsomely from ever more
powerful computational techniques and equipment.

1.0 Numerical Detonation Physics

 Numerical Detonation Physics applies many of the same computational
techniques employed by CFD. The primary reason is because detonations are powered by
the propagation of the detonation wave, a powerful shock wave that transforms the
unreacted explosive into detonation product species. Like the shock waves encountered in
transonic and supersonic flow, detonation waves must be “captured” in the material field
by using special numerical techniques. Gas phase detonations, e.g., the explosive burn of
acetylene gas, are true detonations but they lack some of the complexity associated with
the detonation of condensed (solid or liquid) explosives. Gas phase detonation is usually
initiated by high temperature. It follows that temperature is the dominant term in the
reaction rate expression. One should also not make light of the fact that we actually have

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

2

good, quantitative models for gas phase detonation chemistry. The science behind the
detonation of condensed explosives is not so evolved.

 The detonation of a condensed explosive is most often modeled as a shock-driven
process. Macroscopic observation seems to indicate that a shock wave is often required to
detonate these explosives. Many solid explosives simply “burn” when exposed to a
flame, at least when considered over relatively short time periods. Exposure to a shock
impulse is often needed to initiate the run to detonation for an explosive. This physics
problem is complicated greatly because of the smallness of scales concerning the
detonation wave. The detonation wave covers a thin region, a fraction of a millimeter for
most ideal or Carbon-Hydrogen-Nitrogen-Oxygen (CHNO) explosives like Trinitro-
toluene (TNT). The head of the detonation wave lies at the entrance to the detonation
reaction zone. This is the tiny region in space where the detonation chemical reactions
take place. For condensed explosives, we do not know these chemical reactions. We
know only, in some sense, their end products, and if we detonate two like samples of an
explosive, we may obtain two different product spectrums. For this reason, condensed
explosives are relatively crude chemical mixtures. Still, the detonation process itself may
be addressed by the direct application of the conservation laws for mass, momentum and
energy. This same approach is used for CFD problems, but for explosives we are required
to apply equations of state for both the unreacted explosive material and the detonation
products. It is also important that we consider heterogeneous explosives. These materials
contain non-explosive additives like plastic binders and metal particles. In future
treatments of this problem, we will also be required to treat the material behavior
(material strength versus applied stress) of the solid explosive in response to shock
excitation.

1.1 A Map for this Report

 This report is intended to assist in the process of transitioning detonation physics
algorithms into the Large Eddy Simulation with LInear Eddy Modeling in 3 Dimensions
(LESLIE3D) multiphase physics computer program. The discussions that follow describe
the algorithms applied in the source code included in Appendix A. Although these
algorithms are tested and validated to some extent, it is nont recommended that they be
coded directly into LESLIE3D. Rather, the Harten, Lax and van Leer (HLL) family of
algorithms should be used for flux difference splitting in lieu of Roe’s method. Moreover,
inhomogeneous terms in the equations should be addressed through Strang splitting.1

 The report is organized as follows. In Section 2, we describe the governing
equations for the detonation problem based upon the work of Xu et al.2 Within this set of
equations, we add the terms coupling the detonation flow field to the particle field. We
show that reaction rate, particle coupling and geometric effects may be incorporated as
source terms. The equations of state used for the solid explosive and for the detonation
products are also presented in this section. The advective terms, of critical importance in
the shock-capturing scheme, are clearly delineated. Section 3 describes the eigen-
structure for the system of governing equations. The flux Jacobian matrix is developed

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

3

for the reactive Euler equations adapted for a real gas equation of state. Then we develop
a set of eigenvalues and eigenvectors needed in order to accurately capture the detonation
wave. In Section 4, we discuss the overall numerical scheme and temporal discretization
procedure used in our detonation computer program. We also discuss the development of
the numerical flux vector in detail. Section 5 contains the terms governing the motion of
Lagrangian particles including the drag laws. In Section 6, we provide the results for
three example calculations. After performing a calculation to verify proper code
performance, we simulate the detonation of a spherical mass of HMX loaded with metal
particles. We show a series of detonation waveforms for this explosive, and we go on to
include the resulting particle trajectories and velocities. We also make some basic
comparisons between the results produced by our computer program to archival
explosive performance data for HMX. Finally, in Section 7, we draw several important
conclusions from our development. We also make recommendations for follow-on work
needed to support the installation of detonation physics algorithms in LESLIE3D.

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

4

2 GOVERNING EQUATIONS

 To address the detonation problem, we follow a body of research documented in
the general scientific literature.2 By doing so, we can escape some of the uncertainties
associated with the older programmed burn detonation models.3 We do make a departure
from the core reference in that our development disregards the issue of compaction in the
solid explosive.2 Instead, it is assumed that our explosive is a solid mass at or near the
theoretical maximum density. The present approach allows the reaction zone to be clearly
resolved within the limitations of the grid refinement. As a result, the forces applied to
particles may be resolved more accurately.

2.1 The Reactive Euler Equations

 The reactive Euler equations are frequently used to represent detonation flow
fields based upon a reaction progress equation and a mixture equation of state.2 The
equations for the conservation of mass, momentum, energy and reaction progress may be
readily expressed in vector form. The equation for a detonation field set in one space
dimension may be written as

 PRxG
xt

SSSFU









 (2.1.1)

where

 TEu],,,[U (2.1.2)

is the vector of conserved variables, and

 TuPEuPuu]),(,,[  2F
(2.1.3)

is the flux vector. Also,

 T

G uPEuuu
x

j]),(,,[  2S (2.1.4)

 T

Rx r],,,[000S (2.1.5)

 T

ssP QF],,,[00 S (2.1.6)

We may also write the total energy per unit volume as

 2

2
ueE


  (2.1.7)

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

5

where e is the internal energy per unit mass. The equation of state may be written in the
general form

),,( ePP  (2.1.8)

where  is the reaction progress variable.

 Vectors GS , RxS and PS contain source terms; as we have shown, these
nonhomogenous terms are kept on the right hand side of the reactive Euler equations and
may be treated independently from the advective terms. Vector GS contains the
geometric source terms that allow the system to be configured for planar, cylindrical or
spherical one-dimensional flow. To adapt (2.1.1) for planar flow, we need only set 0j

in (2.1.4). We may adapt (2.1.1) for cylindrical or spherical one-dimensional flow by
setting 1j or 2j , respectively. Vector RxS contains the reaction rate source term
governing the rate of progress for the detonation reaction. The reaction rate r may be
written in many different forms depending on the explosive.4 The term we have chosen to
use for HMX may be written as

 )(









 1

N

CJP

P
kr (2.1.9)

where CJP is the Chapman-Jouquet pressure for HMX; k , N and  are constants
chosen to fit experimental data.5 Note that this reaction rate law is dependent upon both
pressure and reaction progress. The source term vector PS has been added to the system
by the author. It represents the dynamic coupling between the detonation products and a
field of discrete, massive Lagrangian particles. The coupling is based upon both
momentum and thermal effects.6 The specific forms of the coupling terms are presented
in a later section.

2.2 Mixture Equations of State

 For the detonation problem, relevant equations of state are cast in the form of
(2.1.8). This form is complicated since pressure varies as a function of density, internal
energy per unit mass and reaction progress. In this analysis, the reaction progress variable
is analogous to a species mass fraction commonly used in reacting gas flows. Moreover,
it is used to compute the specific internal energy for the detonating mixture by forming a
weighted sum of the equation of state (EOS) for the solid explosive and the EOS for the
detonation products. The resulting expression for specific internal energy is called the
mixture EOS.2 Our governing equations (2.1.1), discretized in accordance with the finite
volume method, rely upon the mixed cell approach. Each flow cell is assumed to contain
a mixture – part solid explosive and part detonation products. The mixture fraction is
given by the reaction progress variable  , and  is defined as the mass fraction of the

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

6

detonation products in the cell. The density within a cell is the sum of the densities for the
solid (s) and gas (g) phases, respectively, i.e.,

 gs   (2.2.1)

so is given by






g
 (2.2.2)

and

 



1s (2.2.3)

Hence, we have that  is the mass fraction of the gas (detonation products) phase. We
also assert that the internal energy for a given finite volume cell may be expressed as

 sg eee)(  1 (2.2.5)

where ge and se are the specific internal energies for the gas and solid phases,
respectively. This mixing rule differs from the archived approach based upon specific
volume, but to date, we have not been successful in applying Xu’s closure.7 Assume the
same pressure for both phases with each phase having its own equation of state, i.e.,

),(Pee ggg  (2.2.6)

),(Pee sss  (2.2.7)

with g and s given by (2.2.2) and (2.2.3).

2.3 Solid Explosive Equations of State

 In the previous section, we showed that one part of our mixture EOS represents
the solid explosive. In the discussions that follow, we apply two different forms of an
EOS originally developed by Hayes.8 The first form of this EOS (Hayes-I) works very
well for mechanical effects.2 The Hayes-I EOS is given as







































































1111 0

1

0

4
0

0

0
3

0

s

s

N

s

s

s

s

s

ss Nt
P

t
g

PP
Pe














)(),((2.3.1)

where

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

7

 00 sg  (2.3.2)

0

0
3

s

vs gTC
t


 (2.3.3)

)(1

0

1
4




NN

H
t

s
 (2.3.4)

In equations (2.3.1) through (2.3.4), 0P , 0T and 0s are the ambient pressure,
temperature and unloaded solid density. 0 is the Gruneisen parameter, and vsC is the
constant volume specific heat for the solid. 1H and N are parameters used to fit the EOS
to data. Table 1 lists all of the required parameters for this EOS.2

Table 1 - Hayes EOS Data for HMX

H1 1.3 x 1010 N/m2

N 9.8

Cvs 1.5 x 103 J/(Kg K)

Γ0 1.105

P0 101325 Pa

ρs0 1.9 x 103 Kg/m3

T0 300 K

 The second form of the Hayes EOS (Hayes-II) functions well mechanically but
also incorporates temperature. The Hayes-II EOS is given as






































































































111

11
1

0

1

0

4

0

0

0
3

0

1
0

s

s

N

s

s

s

s

s

N

s

s
ss

Nt

P
t

N

H
PP

g
Pe


















)(

),(

 (2.3.5)

This version of the Hayes EOS may be derived by using Reference 1; however,
additional terms are incorporated in (2.3.5) to match the behavior of (2.3.1) at ambient
pressure. The temperature of the solid explosive is given by

 0

0

1
0

3

1
1

T
N

H
PP

t
PT

N

s

s
s 












































),((2.3.6)

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

8

Together, equations (2.3.5) and (2.3.6) constitute a complete equation of state for a solid
explosive.9 These equations use the same data as is listed in Table 1 for HMX. The
Hayes-II EOS also performs very well in one-dimensional detonation studies for solid
HMX.

2.4 Detonation Products Equation of State

 As equation (2.2.5) indicates, part of the mixture EOS must address the gaseous
products resulting from the detonation of the solid explosive. For the purposes of this
work, we have selected the Jones-Wilkins-Lee (JWL) EOS.1 The JWL EOS is somewhat
controversial, but nevertheless, it is widely applied in hydrocodes. Also, many explosives
have been characterized for this EOS. We apply the JWL EOS in the following form.

0
2

2

1

1

11
1

eQ
R

R
B

R

R
APPe

g

g

g

g

g

gg 





















































































ˆ
expˆ

ˆ
expˆ),((2.4.1)

where A , B ,  , 1R̂ and 2R̂ are coefficients produced by curve-fitting for the explosive
under consideration. Also, note that

 011

ˆ
sRR  , (2.4.2)

and
 022

ˆ
sRR  . (2.4.3)

Q is the heat of detonation for the explosive, and 0e is the reference value for specific
internal energy. There is no firm rule for determining 0e , but we will define 0e as

 00 TCe vg . (2.4.4)

Table 2 - JWL Coefficients for HMX
R1 4.2
R2 1.0
ω 0.3
A 7.783 x 1011 Pa
B 7.071 x 1010 Pa

Cvg (1.1 – 0.28x10-3 ρs0) x 103 J/(Kg K)

Q [7.91 – 4.33 (10-3ρs0 -1.3)2 - 0.934 (10-3ρs0 -1.3)]
x 106 J

vgC is the constant volume specific heat for the detonation products. The data used for
HMX in the JWL EOS is listed in Table 2.2 For the studies performed later in this work,

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

9

we select one of the Hayes equations of state in combination with the JWL EOS to form a
mixture EOS.

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

10

3 SYSTEM EIGEN-STRUCTURE

3.1 Flux Jacobian Matrices

 Capturing the structure of the detonation wave constitutes a difficult numerical
issue involving the discretization of the advective term U

F


 , where











































































































4444

3333

2222

1111

F

E

F

u

FF

F

E

F

u

FF

F

E

F

u

FF

F

E

F

u

FF

)(

)(

)(

)(

U
FA (3.1.1)

is called the flux Jacobian matrix. The term iF simply denotes the ith element of the flux
vector F . Equation (3.1.1) is already annotated with the specific elements of U . It is
important to note that our equation of state is cast in a general form, so the calculation of
the specific elements of (3.1.1) is made more complicated. The method for calculating
these matrix entries relies heavily on the derivatives of pressure taken with respect to the
conservative variables.10 For convenience, the pressure derivatives for this Jacobian are
given below. For the three-dimensional case, the detailed derivation of these pressure
derivatives is presented in Reference 11. For pressure given in the form of (2.1.8), let

e

e

e

P
P

e

P
P

P
P

,,,

;;














































 (3.1.2)

then we may write the pressure derivatives as

 







P

Eu
PP

P
e

Eu






















2

2

,,

 (3.1.3)

 e

E

P
u

u

P

















,,)(
 (3.1.4)



e

u

P

E

P














,,

 (3.1.5)

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

11






PP

u














,,)(
 (3.1.6)

Clearly, the pressure derivatives taken with respect to the conservative variables depend
on the pressure derivatives defined in (3.1.2). These derivatives, in turn, depend on the
specific form of the equation of state (2.1.8). Accordingly, the derivation of the elements
of (3.1.1) is a complicated process not to be presented here. Instead, the reader is referred
to a work containing like, yet detailed, mathematical derivations.11 For completeness, the
flux Jacobian matrix for (2.1.1) is given below.















































uu

P
uP

uP
u

HHau

PPP
uua

e
e

ee

0

1

2

0010

2
2

22













)(
A (3.1.7)

where



PE
H


 (3.1.8)






 PP
uH e )(2 (3.1.9)

and the frozen speed of sound, a , is given by

 2
2




ePP
Pa  . (3.1.10)

The derivation for this speed of sound is also archived.11

 We can also define a vector of non-conservative variables for the reactive Euler
equations as V , where

 TPu],,,[V . (3.1.11)

As you may surmise, the governing equations may also be written in terms of the non-
conservative variables, and we may define a non-conservative flux Jacobian matrix Â
such that11

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

12























u

ua

u

u

000
00

010
00

ˆ
2





A (3.1.12)

The derivation of the non-conservative reaction progress is a simple exercise. Observe
that the conservative form of this equation is written as

 r
xt












)()((3.1.13)

We may expand (3.1.13) as follows.

 r
x

u
tx

u

t









 

























)((3.1.14)

The first term in (3.1.14) vanishes since it is just a scalar multiple of the continuity
equation (component one of 2.1.1), so we obtain

 r
x

u
t









  (3.1.15)

as the non-conservative reaction progress equation.

3.2 Eigenvalues

 The eigenvalues of the flux Jacobian matrix contain important information on the
physics of our detonation problem. We think of any fluid mechanics problem (as well as
most solid mechanics problems) in terms of interacting waves. The detonation problem
can be decomposed into a set of characteristic waves.2 The speeds at which these waves
propagate are given by the eigenvalues of the flux Jacobian matrix.12 For any square
matrix A , the eigenvalues are defined as the set of numbers  such that

 0 IA  (3.2.1)

where I is the identity matrix. We may note that the conservative matrix (3.1.7) is
heavily populated, so it is very difficult to obtain the eigenvalues by using (3.2.1).
Fortunately, the non-conservative matrix (3.1.12) is a simpler form mathematically
equivalent to (3.1.7), so these matrices must have the same eigenvalues.11 Using (2.3.1),
the eigenvalues of (3.1.12) are easily shown to be

 },,,{ auuuau  (3.2.2)

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

13

Note that u is an eigenvalue of multiplicity two, so there are two waves with speed u ,
i.e., the entropy and reaction progress waves both propagating at the flow velocity. The
remaining two distinct eigenvalues au  denote acoustic waves.12 The dynamics of
the detonation process may be described through the interactions of characteristic waves,
but to completely describe these waves, we must determine the eigenvectors for the
detonation problem.

3.3 Eigenvectors

 In order to determine the characteristic waves for (2.1.1), we must determine the
eigenvectors for the conservative Jacobian matrix (3.1.7). When we use the term
eigenvector, in this case, we are referring to a right eigenvector.10

Definition: Given a matrix)(nnA C with a set of eigenvalues Ci , ni ,,1 , we
define the right eigenvector)(ni Cr  associated to the eigenvalue i such that
 iiiA rr  (3.3.1)

Equation (3.3.1) is useful in that it tells us how to find right eigenvectors. To find a right
eigenvector for (3.1.7) associated to an eigenvalue  , we first define the components of
right eigenvector r . Let
 T),,,(4321 r (3.3.2)

Now we apply (3.1.7) and (3.3.1) to create a linear system of equations in the
components of r .



















































































4

3

2

1

4

3

2

1

2
2

22

0

1

2

0010































uu

P
uP

uP
u

HHau

PPP
uua

e
e

ee

)(
 (3.3.3)

The system (3.3.3) directly leads to a system of four eigenvector equations. The
eigenvector equations do not have a unique solution; in fact, they have an infinite number
of solutions, so care is required in structuring prospective choices for the components of
r to design a proper numerical treatment for the problem. Also, it is important to observe
that the number of linearly independent eigenvectors must be same as the order of the
system. For this detonation problem, the Jacobian matrix is of the fourth order, so we
must determine four linearly independent eigenvectors even though we have only three
distinct eigenvalues; the eigenvalue u is repeated.

We begin the process of determining some specific eigenvector components by
extracting the first eigenvector equation from (3.3.3), i.e.,

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

14

 12   (3.3.4)

We may satisfy equation (3.3.4) by choosing

 11  ;  2 (3.3.5)

Equation (3.3.5) may be used in (3.3.3) to produce the remaining three eigenvector
equations

 02 3
22 

















 PP

P
u

uua e
e (3.3.6)

 043

2
2 

















 








 P

u
P

u
i

u
HHau e)((3.3.7)

 04  )(uu (3.3.8)

Based upon (3.3.5), we may produce the eigenvector associated to eigenvalue u . Set

u in (3.3.8), and we see that this equation is trivially satisfied with no restrictions on

4 . Now we set u in (3.3.7) and (3.3.8); by simplifying, we can show that both of
these equations reduce to the same equation, i.e.,

 043

2
2  





 PP

P
u

a e
e (3.3.9)

Since there are no restrictions on 4 , we may freely choose 4 and solve for 3 .

)(4

3

3 


  
ee P

P

P

a
H . (3.3.10)

By cleverly choosing the value of 4 , we produce two linearly independent eigenvectors
associated to the eigenvalue u . If we set 04  , we obtain the eigenvector

T

e

e P

P

P

a
Hu 










 0,,,1

2






r (3.3.11)

Alternatively, we obtain a second eigenvector by setting 14  , so

T

e

e P

P

P

a
Hu 










 111

2

),(,, 




r (3.3.12)

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

15

 We may also obtain the eigenvector associated to eigenvalue au  ; by
returning to equation (3.3.4), let us choose

 11  ; au 2 (3.3.13)

By substituting (3.3.13) into (3.3.8), we may show that

  4 (3.3.14)

We can produce another eigenvector equation associated with this eigenvalue by using
(3.3.14) and setting au  in (3.3.6). By doing so and solving for 3 , we have that

 auH 3 (3.3.15)

One may show that (3.3.13), (3.3.14) and (3.3.15) satisfy (3.3.7), and the eigenvector
associated to eigenvalue au  is

 TauHau),,,( 1r (3.3.16)

 We may derive the eigenvector associated to eigenvalue au  by the same
procedure. We consider (3.3.4) and then set

 11  ; au 2 (3.3.17)

Equation (3.3.8) can be applied to again obtain the result (3.3.14). By substituting
(3.3.17) and (3.3.14) into (3.3.6), we can solve for 3 ,i.e.,

 auH 3 . (3.3.18)

Subsequently, one can show that (3.3.17), (3.3.18) and (3.3.14) satisfy equation (3.3.7).
Hence, the eigenvector associated to eigenvalue au  , may be written as

 TauHau),,,( 1r (3.3.19)

Equations (3.3.11), (3.3.12), (3.3.18) and (3.3.19) are the eigenvectors for the reactive
Euler equations in one dimension. We can form R , the matrix of right eigenvectors, by
allowing each eigenvector to form a column of this matrix. Hence,
































 

10

1

1111

22

auH
P

P

P

a
H

P

P

P

a
HauH

auuuau

eeee

)(R (3.3.20)

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

16

It is a straightforward although tedious exercise to show that R , the determinant of R ,
is

eP

a32
R . (3.3.21)

So far, our development of the eigen-structure for the reactive Euler equations closely
coincides with Glaister’s derivation performed for the real gas equation of state.10 From
(3.3.21), we can see that our eigenvectors are well-defined and constitute a non-singular
system for realistic values of density and the speed of sound with 0eP . As a result, R
is invertible under the same conditions, and we can calculate the matrix of left
eigenvectors L with 1RL , and by using the adjoint matrix for R (the transpose of
the matrix of cofactors) in conjunction with the definition of the inverse matrix, we have
that

























































































eee

e

e

eee

P

a
ua

P

P
au

P

a
uHa

auPa
P

Hua

auPa
P

Hua

P

a
ua

P

P
au

P

a
uHa


























)(

)(

)())(())((

)(

2

22

22

2

2
1

2

12112
1

R
L












































e

ee

ee

e

P

P
aa

P

P

P

a
aa

P

P

P

a
aa

P

P
aa



















2

2

22

1212)()(
 (3.3.22)

Each row of the matrix shown in (3.3.22) is a left eigenvector for the Jacobian matrix
found in (3.1.7).

 Although we have not yet presented explicit forms for the pressure derivatives,
we have accomplished a great deal of work in this section. Equations (3.2.2), (3.3.20) and
(3.3.22) offer a complete description of the structure of the eigen-space associated with
the flux Jacobian matrix A shown in 3.1.7. Moreover, we can formulate a special
similarity transformation, i.e.,

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

17

 LΛRA  (3.3.23)

or

 RALΛ  (3.3.24)

and

























au

u

u

au

000
000
000
000

Λ (3.3.25)

is the diagonal matrix of eigenvalues.11 Recall that matrix L is the inverse of R . Our
discussion of the numerical physics behind Roe’s scheme for the reactive Euler equations
is now complete. The Roe formulation is quite important from the theoretical standpoint,
but this method is difficult to implement for two or more non-Cartesian space
dimensions. Fortunately, other flux-based discretization methods such as the Harten, Lax
and van Leer (HLL) family of schemes can easily be applied to this problem. Moreover,
these methods do not require the calculation of pressure derivatives (yet to be discussed)
for the mixture equation of state. This fact affords greater of ease of calculation for a
production numerical scheme.

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

18

4 BUILDING THE NUMERICAL SCHEME

 In this section, we pull together all of the aspects of detonation physics and
mathematics discussed in preceding sections and dedicate our efforts to the solution of
our benchmark problem – simulating the detonation of a finite sphere of HMX. In order
to accomplish this goal, we begin by presenting detailed pressure derivatives for our
mixture equation of state. Then we discuss the details associated with our chosen
numerical integration scheme including formulation of the numerical flux vector.

4.1 Pressure Derivatives

 The purpose of this subsection is to document formulas for the pressure
derivatives (3.1.2) of the mixture equations of state. These derivatives must be computed
under the support defined by the set of primitive variables.11 In this work, we consider
two mixture equations of state. The first mixture EOS, called the Hayes-I/JWL EOS is
given by substituting (2.3.1) and (2.4.1) into (2.2.5). The second mixture EOS, referred
to as the Hayes-II/JWL EOS, is created by substituting (2.3.5) and (2.4.1) into (2.2.5).
Either mixture EOS consists of a lengthy formula, so to promote brevity in
documentation, we can relate the two mixtures equations of state to one another. If we
look carefully at the Hayes-I and Hayes-II formulas, (2.3.1) and (2.3.5), respectively, we
see that

























 1

0

1

N

I

s

II

s
gN

H
ee



 (4.1.1)

These expressions for the internal energy of the solid explosive differ by only one term.
The Hayes-I/JWL mixture EOS may be written as

 g

I

s

I

M eee  )(1 (4.1.2)

Hence, by using (4.1.1), we may write the Hayes-II/JWL mixture EOS as

 g

N

I

s

II

M e
gN

H
ee 




 
























 
 1

11
1

0

1)()()((4.1.3)

where we have used (2.2.3). A general formula for the Hayes- K /JWL mixture EOS may
be written as

 g

N

K

II

I

s

K

M e
gN

H
ee 




 
























 
 1

11
1

0

1)()()((4.1.4)

Accordingly, equations (2.3.1) through (2.3.4) may be used to expand (4.1.4) and obtain

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

19
























 






















































































1
11

11

111

0

1

0
2

2

1

1

5

1

0

4
0

N

K

II

N

NK

M

gN

H

eQ
R

R
B

R

R
A

ttDPe




























)()(

)(
ˆ

expˆ
ˆ

expˆ

)()(

 (4.1.5)

where



 11





g
D (4.1.6)

0

0
3




P
t  (4.1.7)

 41 tN)( (4.1.8)

g

P
tt 0

45  (4.1.9)

Equation (4.1.5) may be solved for pressure, i.e.,































































































































)()(

)(
ˆ

expˆ
ˆ

expˆ

)()(





























11

11

111
1

0

11

0
2

2

1

1

5

1

0

4
0

N

NK

II

N

NK

M

gN

H

eQ
R

R
B

R

R
A

tte
D

P

 (4.1.10)

Although (4.1.10) is complicated, it is in a convenient form for differentiation through the
use of the quotient rule. We also note that (4.1.10) consists of a sum of eight terms, i.e.,

 



8

1

1
i

iic
D

P  , (4.1.11)

so we may use linearity and differentiate each term individually. If we designate a non-
conservative variable of differentiation as q , },,{ eq  , then we have that

 























 8

1
2

1
i

i
i

i
q

D

q
Dc

Dq

P


 . (4.1.12)

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

20

Equation (4.1.12) presents a very convenient method for evaluating pressure derivatives.
Below, we list explicit equations required in evaluating (4.1.12).

 1001 111
11 
















e
ceK

M










 ;;;; (4.1.13)

 011 22

2

02
2

0

2 















e
c



















 ;;;; (4.1.14)

01

1
1

1

3

1

0

13

2

00

3
43

1

0

3


























































e
N

N
tc

N

N

N

N

N

N


























;)(

)(;;)(
 (4.1.15)

 0101 444
444 
















e
tc










 ;;;; (4.1.16)


























































































































1

1

2

15

11

2

5

5
5

1

1

5

11

1
11

0
1

R

R

R

RR

e
Ac

R

R

ˆ
expˆ)(

ˆ

ˆ
exp

ˆ

;;
ˆ

expˆ

 (4.1.17)


























































































































2

2

2

26

22

2

6

6
6

2

2

6

11

1
11

0
1

R

R

R

RR

e
Bc

R

R

ˆ
expˆ)(

ˆ

ˆ
exp

ˆ

;;
ˆ

expˆ

 (4.1.18)

 .0;1;0;; 777
077 
















e
eQc










 (4.1.19)

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

21

0
1

11

111

8

0

8

1

0

1

0

81
8

0

1

8














 






































e
N

N

gN

H
c

N

N

N

N

N


























;)()(

)(;;)(
 (4.1.20)

We also have that

 0
11

2
















e

D

g

DD ;;


 (4.1.21)

Clearly, we may use (4.1.12) through (4.1.21) to evaluate the pressure derivatives
required by the eigen-space decomposition discussed in Section 3.

4.2 Finite Volume Discretization

 Ultimately, we must discretize the governing equations (2.1.1) in order to
numerically solve the detonation problem. We may illustrate the discretization procedure
by considering a simplified form of (2.1.1), i.e.,

 SFU











xt
 (4.2.1)

where S is a vector containing all of the source terms. To enact the finite volume
discretization, we integrate (4.2.1) in 1-D space as follows

 




















 2/1

2/1

2/1

2/1

2/1

2/1

i

i

i

i

i

i

x

x

x

x

x

x

dxdx
x

dx
t

SFU (4.2.2)

Moreover, we obtain

 















 2/1

2/1

2/1

2/1

2/1

2/1

i

i

i

i

i

i

x

x

x

x

x

x

dxdx
t

SFU (4.2.3)

Since the limits are fixed in the first term of (4.2.3) and since we assume that U is
continuous on the interval),(// 2121  ii xx , we may interchange the order of integration and
differentiation to find that

 















 2/1

2/1

2/1

2/1

2/1

2/1

i

i

i

i

i

i

x

x

x

x

x

x

dxdx
t

SFU (4.2.4)

By observing that the integral in the first term is taken over space, we may evaluate it as

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

22

)(~
//

/

/

2121

21

21

 




iii

x

x

xxdx
i

i

UU (4.2.5)

where iU~ is the average of),(txUU  taken over space in the interval],[// 2121  ii xx .
This interval defines cell i in the finite volume grid. Because of the integration, observe
that)(~~

xii UU  . If we also apply this idea to the source term, (4.2.4) becomes

)(~)(
~

////
/

/
21212121

21

21
 




iii

x

xii
i xxxx

dt

d i

i

SFU (4.2.6)

the so-called semi-discrete form. Hence,

 iii

ii

i

xxdt

d SFFU ~)(
~

//
//




 



2121

2121

1 (4.2.7)

The values of F used in (4.2.7) are evaluated at cell interfaces (natural locations for
possible discontinuities in Euler solutions). As a result, at each interface, F is evaluated
as a numerical flux through the use of an upwind discretization scheme based on the
values of iU~ defined at the cell centers. The upwind scheme, described later in
Subsection 4.4, makes use of the theory developed in Section 3.

4.3 Temporal Discretization

 The semi-discrete form (4.2.7) offers certain numerical advantages (or
disadvantages, depending on your point of view). This form effectively decouples the
temporal discretization scheme from the spatial discretization. As a result, we are free to
choose different methods for each discretization. On the other hand, one may argue that it
is unwise to decouple the time and space schemes. Why? Our shock-capturing scheme
fundamentally relies on solutions of the Riemann problem and on characteristics.12
Characteristics adjoin the time and space coordinates in an inextricable manner, so in the
strictest sense, these coordinates cannot be decoupled. This effect has led to the creation
of a large family of schemes based upon Godunov’s method that couple the time and
space discretization.13 Although we do not disagree with these ideas, our development is
evolutionary, so it is very important that we understand our space scheme at a
fundamental level. For these reasons, we will use the decoupled approach involving what
is perhaps the simplest, explicit temporal discretization method. Let us recall (4.2.7) and
discretize the time derivative with a simple forward difference. The current time level is
indicated by the superscript n .

 n

i

n

i

n

i

i

n

i

n

i

xt
SFFUU ~)(

~~
// 











2121

1 1 (4.3.1)

where nn ttt  1 is the numerical time-step, and 2/12/1   iii xxx is the spatial
stepsize. Note that (4.3.1) represents a fully explicit method; by rearranging, we obtain

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

23

 











 

x
t

n

i

n

in

i

n

i

n

i
2/12/11 ~~~ FFSUU (4.3.2)

Basically, equation (4.3.2) implements the Euler time integration method.14 The only
numerical stability control we place on (4.3.2) involves a restriction on the time-step t .
This restriction is enforced through a Courant-Friedrichs-Lewy (CFL) criterion. We
apply a factor of 0.5 to the new predicted time-step given by





















ii

i

ii

pred

au

x
t

max1
min (4.3.3)

4.4 The Numerical Flux

 As we mentioned earlier, the flux vector F defined at each interface must be
evaluated via an upwind method in order to facilitate the automatic capturing of shock
waves without numerical oscillations. Our upwind method of choice is Roe’s flux
difference splitting scheme.12 To promote notational clarity, let us designate the
numerical flux vector by the symbol f while retaining the symbol F for the regular flux
vector (2.1.3) defined by the reactive Euler equations. Roe’s numerical flux vector is
simply stated below.11

))(~(LRRL UUAFFf 
2

1 (4.3.4)

where A~ is the flux Jacobian matrix defined by (3.3.23) and evaluated at the interface in

Figure 1. Interface Notation

question. The (~) notation indicates that this evaluation is conducted with the use of Roe-
averaged variables. The designations L and R are best explained by referring to Figure 1.
The subscript L or R designates that the quantity is defined just to left or right of the

Distribution A. Approved for public release, distribution unlimited. (96ABW-2011-0548)

24

interface, respectively. In Figure 1, the interface is located at 2/1ix between cell i and
cell 1i . Why would the left and right interface values of some property differ? The
answer is very simple. Remember that we stated earlier that our method involves
solutions of the Riemann problem. These solutions admit discontinuities, e.g., shock
waves. Hence, by the nature of a discontinuity, the properties taken to the left and the
right of an interface differ. In the simplest view, we can say that the properties to the left
of the interface taken on the values defined in cell i ; it follows that the properties to the
right of the interface take on the values defined in cell 1i . This means of selecting the
left and right interface values renders first-order accuracy on uniform meshes. There are
other ways to define these upwind values. A higher order method is discussed in a later
subsection. Our Roe averages are computed from these upwind (L and R) variables.

 The Roe average constitutes the physically correct representation of an average at
a discontinuity conforming to the basic ideas of flux difference splitting.15 A
mathematically lengthy derivation is required to produce Roe’s formulas, so we merely
state the results.10

 RL  ~ (4.3.5)

RL

RRLL uu
u








~ (4.3.6)

RL

RRLL HH
H










~ (4.3.7)

RL

RRLL ee
e








~ (4.3.8)

RL

RRLL











~ (4.3.9)

 







 2~

2
1~~~~

ueHP  (4.3.10)

 2
2

~
~~~~




ePP
Pa                                                 (4.3.11) 

 
One may note that (3.3.20) through (3.3.22), (3.3.25) and (4.3.11) require Roe-averaged 
pressure derivatives. Recall that explicit formulas for these derivatives are presented in 
(4.1.12) through (4.1.20). The derivatives are presented in terms of the primitive 
variables, so we claim that Roe-averaged values of the pressure derivatives may be 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

25 

obtained by simply evaluating these formulas for the Roe-averaged variables presented in 
(4.3.5) through (4.3.10). In practice, this procedure seems to work well. 
 
 We may now address the practical evaluation of the numerical flux vector as it is 
defined in (4.3.4). The vectors LF  and RF  are the standard Euler flux vectors (2.1.3) 
evaluated for the upwind conservative variables LU  and RU  (or primitive variables Rq  
and Lq ), respectively. The remaining term 
 
                                                            )(~

LR UUA                                                  (4.3.12) 

 
is denoted as the numerical viscosity expression. The difference between the conservative 
variables left and right of the interface may be easily evaluated through the use of (2.1.2).  
A~  may be evaluated as follows. 

                                                            LΛRA ~~~~
                                                   (4.3.13) 

where the (~) notation indicates that all of the entries in the matrices are calculated with 
the use of averaged variables. The matrix Λ~  is created by taking the absolute value of 

each element of Λ~ , the diagonal matrix of eigenvalues. Finally, (4.3.12) is computed by 
a series of simple matrix-matrix and matrix-vector multiplications; (4.3.4) is easily 
evaluated by using vectors sums. 
 
4.5 A Higher-Order Scheme 
 
 The scheme described in the preceding subsection is only accurate to the first 
order, and it is highly dissipative, a detriment to the sharp resolution of detonation waves.  
In this subsection, we briefly describe an enhancement to the first order scheme that is 
third-order accurate on uniform grids. As you may have concluded, the left and right 
interface values are constructed from the cell-center values to the left and right of the 
interface, respectively. To increase the order of accuracy for the scheme, we instead 
reconstruct the interface values using interpolating polynomials involving more than one 
cell-center value. One way to apply this idea is through the use of a Monotone Upwind 
Scheme for Conservation Laws (MUSCL).12 The equations for the left and right interface 
variables are provided below for the interface located at 2/1i . Consider the primitive 
variable q ,   ,,, Puq . 
 

                    
















  )()())(()( 1211

1
11

4

1
ii

L

iiLiL qq
r

qqrqq              

(4.4.1) 
 
where 3/1  to achieve third-order accuracy, and 
 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

26 

                                                          
21

1










ii

ii
L

qq

qq
r .                                                 (4.4.2) 

 
  is a function designed to serve as a non-limiter limiter. In every case, our interpolated 
data must be monotone; otherwise, the interpolation procedure will result in the 
formation of non-physical oscillations in the numerical solution.12 The nonlinear limiter 
is designed to maintain the monotonicity of smooth sections of data when interpolated to 
high order. We have chosen the Van Albada limiter for use in this problem, i.e., 
 

                                                           
2

2

1 r

rr
r




 )(                                                   (4.4.3) 

 
The right interface variable is given by 
 

                         
















  )()())(()( 11

1
11

4

1
ii

R

iiRiR qq
r

qqrqq           (4.4.4) 

 
For this expression, the ratio used by the limiter is defined as 
 

                                                           
ii

ii
R

qq

qq
r










1

1                                                     (4.4.5) 

 
Equations (4.4.1) through (4.4.5) cannot be implemented without due cognizance. The 
left interpolant involves cell-center values located at 2i , 1i  and i . As a result, we 
must ensure that 
 
                                                      0211   )()( iiii qqqq                                       (4.4.6) 
 
Otherwise, the cell-center data is non-monotone, and the interface values must be set to 
the first-order values 

                                                                 
iR

iL

qq

qq



 1                                                      (4.4.7) 

 
in order to properly smooth the solution.  For the right interpolant, we must ensure that 
 
                                                     011   )()( iiii qqqq                                           (4.4.8) 
 
or we must use the first-order interpolation values (4.4.7). In addition, after the criteria 
(4.4.6) and (4.4.8) are satisfied, we are required to limit on the ratios (4.4.2) and (4.4.5).  
Based on the data, these ratios may become undefined, so the limiter function (4.4.3) 
must be modified ensure that its value always remains finite. If this interpolation strategy 
is used properly, the Roe algorithm becomes a high-resolution flux difference splitting 
scheme. 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

27 

 
 
4.6 Boundary Conditions 
 
 In most cases, we cannot solve partial differential equations without applying 
boundary conditions. Even for our simple detonation problem cast in one dimension, we 
must apply boundary conditions at 0x (the center of the sphere) and at MAXxx   (the 
outer surface of the sphere). At the center of the sphere, we enforce fully reflective 
boundary conditions through the use of a ghost cell installed at 0i , i.e., 
 

                                                                 

1

1

1

1

10

ee

PP

uu











0

0

0

0





                                                    (4.5.1) 

 
We have assumed that the first flow field cell adjacent to this boundary has the index 

1i . 
 At the outer surface of the sphere, we apply extrapolated boundary conditions to 
mimic a supersonic outflow. We implement this condition by installing a ghost cell at 

MAXii  . We set conditions in this cell as follows. 

                                                          

1-IMAXIMAX

1-IMAXIMAX

1-IMAXIMAX

1-IMAXIMAX

1-IMAXIMAX

ee

PP

uu















                                             (4.5.2) 

 
Boundary conditions (4.5.1) and (4.5.2) function well for the detonation of a finite 
spherical mass of HMX. 
 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

28 

5 PARTICLE MOTION 
 

 In this section, we extend our discussion beyond the application of numerical 
detonation literature cited thus far. Given the level of interest in Multiphase Blast 
Explosives (MBX), it is desirable to incorporate solid particles into our detonation 
programming. This effort is new, so our treatment of solid particles is limited, to a certain 
extent. Still, our particles have realistic mass and finite radii. They are driven by the 
detonation through the use of Lagrangian laws of motion. Our particle algorithms have 
only three major limitations: 
 
 (i) The particle collection exists in the diffuse limit. Particles are assumed not to 
interact with one another. 
 
 (ii) Particles are assumed to exist as rigid spheres. The do not deform or change 
phase during the detonation event. 
 
 (iii) This model is restricted to one dimension. We can only establish initial 
particle positions along a single ray. 
 
Based on these assumptions, we can investigate the efficacy of this model in predicting 
the post-detonation conditions for a mass of solid HMX loaded with particles. 
 
5.1 Coupling Terms 
 
 We may now discuss the coupling terms (source terms) for particles presented in 
equations (2.1.1) and (2.1.6).  sF  and sQ  have relatively simple descriptions. sF  
represents the transfer of momentum between the gas phase and the particle phase while 

sQ  represents the similar transfer of thermal energy. For spherical particles, these terms 
may be written in a simple form.6  Assume that the total number of particles is pN . 
 

                                                    
dt

du
rF

p

pp

N

p

s

p

3

1 3
4




                                          (5.1.1) 

                                                  



pN

p

ppps TTrhQ
1

24 )~(                                       (5.1.2) 

 
where p , pr  and pu  are the solid density, radius and velocity of the thp  particle, 

respectively. Therefore, dtdu p /  is the acceleration of the thp  particle. Also, T
~  is the 

temperature of the gas phase at the surface of the particle, and pT  is the particle 

temperature. Actually, T~  is the Favre-filtered temperature; this filtering operation is used 
to take the presence of turbulence into account. Our simulation is non-viscous, so we 
simply set T~  equal to the gas phase temperature T . The parameter ph  is the heat transfer 
coefficient that governs the transfer of thermal energy at the particle/fluid interface. In 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

29 

general, ph  is experimentally determined. By specifying (5.1.1) and (5.1.2), we can 
accurately describe the coupling between the gas and particulate phases. Of course, these 
equations only apply to particles of fixed mass. Additional terms (including mass 
conservation) must be specified for particles that react with the gas phase. 
 
 
5.2 Particle Laws of Motion 
 
 The detonation physics algorithms incorporate discrete, finite-mass particles, so 
we apply Lagrangian equations for tracking the movement of particles. Let px  designate 

the radial coordinate of the thp  particle. Then we have that 
 

                                                               p

p
u

dt

dx
                                                       (5.2.1) 

 
The particle velocity pu  must be determined from the evolution equation given by a 
model.  We have two alternatives for this model; the first is called the “Spray Model” 
which may be described as follows.6 

 

                                                )(
Re

p

pp

pDp
uu

r

C

dt

du


216

3




                                     (5.2.2) 

 
where the particle Reynolds number pRe  is defined as 

                                                       p

p

p uu
r




2
Re                                             (5.2.3) 

 
The drag coefficient for the particle DC  is conveyed by the “Spray Drag Law”, i.e., 
 

                                    



































1000440

1000
6

1
24

32

p

p

p

p

DC

Re.

Re
Re

Re

/

               (5.2.4) 

 
 ,   and u  are the density, dynamic viscosity and velocity of the gas phase in the 
vicinity of the particle. This model is not appropriate for detonation problems, but it still 
serves well for testing. For the problem of a detonation with solid inclusions, we apply a 
high speed gas flow model originally developed for solid rocket motors. 
 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

30 

 The high speed gas flow model was developed for the multiphase flow field 
created by the burn of porous, powdered explosive material.16 In this case, the particle 
acceleration is given by 

                                           )( pp

p

Dpp
uuuu

m

Cd

dt

du



2

8
.                                   (5.2.5) 

 
In order to maintain our notation consistent with the literature, (5.2.5) is written in terms 
of the particle diameter pd  instead of the radius. Also, pm  is the mass of the thp  particle.  
This high speed drag law provides the drag coefficient through a more complicated 
calculation. First, we calculate a “Mach-zero” drag coefficient, 0DC , i.e., 
 

                     


























450

450080
370

080450

080

22

2
2212

21

0

.

..
.

).().(

.








C

CC

C

CD                 

(5.2.6) 
 
where pRe  is calculated by using (5.2.3), and 
 

                                                 42.0
Re

4.4
Re
24

1 
pp

C                                           (5.2.7) 

                                                 















p

C
Re

15075.1
3

4

1

2

1
2






.                                        (5.2.8) 

 
In (5.2.6) and (5.22.8), we have introduced two new parameters 1  and 2 ; they are the 
volume concentrations of the gas and particle phases, respectively. These parameters 
require interpretation when considering the detonation problem. At the outset of the 
problem, the solid explosive has not been detonated, so there is no gas phase at this point.  
The best course of action is to compute the initial values of 1  and 2  based upon the 
volume of the solid explosive and the volume of particles. Since we are not simulating 
details of the shock interaction with metal particles, we calculate 1  and 2  on this basis 
of the initial calculation and maintain them fixed for the duration of the detonation. We 
must then calculate a final value of DC  based on a Mach correction.17 This correction 
exists due to the natural variation in the drag coefficient with Mach number. If we do not 
wish to implement a drag correction, then we set 0DD CC  ; otherwise the corrected value 
of DC  may be calculated from 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

31 

                                         















 63.40

427.0exp1
M

CC DD ,                                          (5.2.9) 

where 

                                                      
a

uu
M

p
 .                                                      (5.2.10) 

By using the particle velocities provided by (5.2.2) though (5.2.4) or (5.2.5) through 
(5.2.10), we may integrate (5.2.1) to determine the track of each particle through space 
during the detonation. 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

32 

6 RESULTS 
 

 From the start of this effort, several versions of our current numerical detonation 
computer code have been developed by the author. The purpose of this section is to 
present some of the results produced for typical problems. Specifically, we discuss three 
results.  The first set of results is intended to show that our detonation program is 
functioning properly and producing physically correct solutions.  In a second calculation, 
we address the numerical detonation of a spherical mass of pure HMX.  For this problem, 
we have computed results by using both the Hayes-I and Hayes-II equations of state for 
the solid explosive combined with the JWL EOS for the detonation products.  Finally, we 
discuss the results for the detonation of a spherical mass of HMX loaded with steel 
particles. 
 
6.1 Simple Plane Wave Detonation 
 
 This test problem, described in Reference 2, is used to show whether or not the 
flux difference splitting scheme is working properly. In this case, we endeavor to solve a 
Deflagration to Detonation Transition (DDT) problem in one dimension.  Both the 
explosive and the detonation products are modeled by using the calorically perfect gas 
EOS.  The associated mixture EOS is given as 
 

                                                        


Q
P

e 



)( 1

                                               (6.1.1) 

 
As discussed in Section 4, we apply fully reflective boundary conditions at 0x  and 
extrapolation conditions at MAXxx  .  For this problem, we use the reaction rate 
expression 

                                                    





















P

E
kr aexp)(1                                          (6.1.2) 

where (6.1.2) is in Arrhenius form; k  is the reaction rate constant, and aE  is a parameter 
that behaves like an activation energy. The one-dimensional domain is defined in 

120  x .  Also, we have that 10aE ; 50Q ; 4.1 , and 7k . The problem is 
initialized with 0u ; 0P , and 0  everywhere.2  The initial density distribution is 
given by 

                                           120
31

1
2




 x
x

x ,
)exp(

)( .                               (6.1.3) 

 
This density distribution initiates the reaction in the region near 0x by boosting the 
reaction rate term. 
 
 
 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

33 

 
Figure 2. Problem 1 Detonation Field Density, Time = 3.0 

 

 
Figure 3. Problem 1 Detonation Field Velocity, Time = 3.0 

 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

34 

 
Figure 4. Problem 1 Detonation Field Pressure, Time = 3.0 

 
             

 
Figure 5. Problem 1 Detonation Field Reaction Progress Variable, Time = 3.0 

 
This problem does not possess an “exact” solution, but Xu et al. have obtained a 

fully converged numerical solution using a mesh consisting on 3200 cells.2 This problem 
provides an excellent test detonation physics algorithms. Accordingly, we have generated 
three numerical solutions on grids comprised of 200, 800 and 3200 cells, respectively.  
The numerical solutions for density, velocity, pressure and the reaction progress variable 
are provided in Figures 2 through 5, respectively, at the dimensionless time 3.0. In each 
figure, solution plots are color-coded to correspond to the mesh used. The behavior 
shown in each plot agrees quite well with archived plots.2 We have observed only one 
anomaly in our solutions. Strangely enough, on the mesh consisting of only 200 cells, 
there are noticeable oscillations in the reaction progress variable.  These oscillations 
dissipate with increasing mesh density. The explanation for this behavior is not 
immediately evident. In some of our solutions, the reaction progress variable has been 
observed to hunt between the solid and gaseous equations of state.  In fact, this variable is 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

35 

very sensitive and couples strongly to the reaction rate.  We apply no post-solution 
filtering to this variable. Secondly, we are using a weak time integration scheme with 
poor numerical stability performance. The oscillations become less prevalent with 
increasing grid density, so the space scheme may be compensating for the time scheme. 
This phenomenon bears further investigation as this work continues. We will also re-
examine the nonlinear limiter coding.  Nevertheless, our converged solution agrees well 
with the converged archival solution.2 

 
6.2 Detonation of Pure HMX 
 
 This problem is intended to demonstrate our computer code’s capability for 
simulating the detonation of a sphere of pure HMX. This problem permits a test of our 
discretization of the geometric source term found in the reactive Euler equations (2.1.1) 
and (2.1.4). It also represents our first attempt at capturing the physics of a realistic 
detonation event. In this case, we address the detonation of sphere of solid HMX with a 
radius of 4.5 cm. The radius of the sphere is divided into 800 cells.  Figure 6 shows the 
density, velocity, pressure and reaction progress variables for the numerical solution at 
three microseconds (μs) detonation elapsed time. As you can see, the Von Neumann 
spike is clearly resolved in this solution as is the Taylor wave. Moreover, the Chapman-
Jouquet pressure is captured at the experimentally obtained value of 42 GPa. Also, the 
numerical detonation velocity has a value of 1.02 cm/μs which is very close to the 
experimentally obtained value of 0.911 cm/μs.21 Of course, the experimental value is 
generally taken from tests that mimic plane wave detonation conditions. As a result, we 
expect to calculate a different value for the spherical detonation problem. Overall, the 
results agree very closely with the archival data. We have also solved this same problem 
by using the Hayes-II/JWL mixture EOS. The results of this analysis are given in Figure 
7. It is interesting to observe that the Taylor wave is captured in this solution even more 
smoothly than it was in the preceding case. The more complex Hayes-II EOS may 
actually offer greater stability when used in the mixture EOS. This numerical solution 
also offers excellent comparisons with the Chapman-Jouquet pressure and detonation 
velocity for HMX. Both mixture equations of state show that the detonation reaction 
occurs in a nearly instantaneous manner. As you can see, the reaction progress variable 
changes in a nearly discontinuous manner at the detonation front. In either case, our 
computer programming captures the appropriate physics for the detonation, and it renders 
a wide array of physical data (far more than is shown here). 
 
 
 
 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

36 

 
Figure 6. Numerical detonation solution Hayes-I/JWL in HMX at 3 μs. Horizontal axis is distance in 
meters. 

 
Figure 7. Numerical detonation solution Hayes-I/JWL in HMX at 3 μs. Horizontal axis is distance in 
meters. 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

37 

6.3 Detonation of HMX Containing Metal Particles 
 
 This test case is the final detonation problem addressed by this report. We 
consider the detonation of a spherical mass of HMX loaded with a radial distribution of 
steel particles. The mass of the HMX sphere remains the same as is used for the 
preceding problem, and we still have 800 finite volume cells defined along the charge 
radius. For this example, we have placed ten particles, at uniform spacing, along the 
charge radius. The particles each have a radius of 463 μm and a material density of 7860 
kg/m3. We assume the gas viscosity has a value of 1.7x10-5 kg/(m.s). Furthermore, in this 
simulation study, we have applied the high speed flow drag law. The results for particle 
locations are presented in Figure 8 while the plot of particle velocities is given in Figure 
9. The particle tracks shown in Figure 8 clearly indicate the passage of the detonation 
wave. For particles farther away from the charge center, the particle tracks show changes 
in slope at progressively larger times.  The sudden change in track slope concurs with the 
nearly discontinuous change seen in the particle velocity traces shown in Figure 9. Also, 
in Figure 9, the effect of the drag law can clearly be seen as the particle velocities rise 
rapidly in the wake of the detonation wave then fall quickly under the action of drag in 
the region behind the wave. We have also applied the Mach correction to the rocket drag 
law. In the velocity trace for the particle closest to the charge center, we can see the 
velocity begin to level off at 4.5 μs. Available data indicates that the calculated terminal 
velocity at or near 375 m/s is an acceptable value. This simulation does not include 
thermal effects since we are still in the process of completing our detonation products 
EOS. 
  
 

 
Figure 8. Radial locations for steel particles embedded in a mass of detonating HMX 

 
 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

38 

 
Figure 9. Radial velocities for steel particles embedded in a detonating mass of HMX 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

39 

7 CONCLUSIONS 
 
 In this report, we have presented the governing equations for the direct numerical 
simulation of the detonation of a solid explosive material.  Proper equations of state have 
been discussed for both the solid explosive material and for the gaseous detonation 
products.  From these equations of state, we have developed a mixture equation of state 
relating the specific internal energy for the detonation to the thermodynamic pressure.  
The resulting computer program has been tested on an archival detonation problem for 
the purpose of comparison. We have presented results for the detonation of a spherical 
mass of pure HMX. 
 
 More importantly, we have incorporated particle tracking algorithms within the 
programming. As a result, the code can now explosively drive particles under the action 
of a detonation wave with coupling to a drag law. This mechanism allows the code to 
simulate the detonation of a Multiphase Blast Explosive in the diffuse limit of particle 
loading. We have built drag laws for both spray and high speed gas flow drag law into the 
code. For a test problem, we have simulated the detonation of a mass of HMX loaded 
with a radial distribution of steel particles. The trend in post-detonation velocities of these 
particles meet our expectations. 
 
8 RECOMMENDATIONS 
 
 During the months ahead, detonation physics algorithms are scheduled for 
implementation in LESLIE3D. The development of the present work has been a learning 
experience accompanied by a large number of difficulties, especially in the 
implementation of Roe’s flux difference splitting scheme. A first recommendation is that 
the HLL family of schemes be used instead. These schemes are more robust and do not 
require the use of pressure derivatives. Also, these schemes already operate well inside of 
LESLIE3D. The detonation physics solver will also benefit from the interface tracking 
scheme already coded into LESLIE3D. Clearly, the governing equation differ at the 
interface between the condensed explosive and the surrounding gas field. This situation 
necessitates an interface to maintain code stability. 
 
 The detonation physics algorithms discussed here must be adapted for curvilinear 
coordinates in three dimensions. For HLL flux forms, this process should not be difficult. 
The author has already done some work in this area. However, the pressure and specific 
volume (or density) closures associated with the mixture equation of state do require 
attention. The Gas-Interpolated Stewart-Prasad-Asay (GISPA) method requires these 
closures to address the multiphase physics of detonation. There is no unique set of 
closures available for this process, but the chosen closures must be carefull accomplished. 
Some difficulty has been encountered in the use of the specific volume closure (due to 
Xu), and this difficulty should be investigated and resolved. 
 
 The Hayes equation of state for the solid explosive is an older relationship that 
characterizes very few explosives. The Mie-Gruneisen equation of state characterizes 
many more explosive materials. That is to say, there is data available. However, the 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

40 

mixture equation of state must be rederived for the Mie-Gruneisen formulation. It may be 
combined with the JWL adiabat for the detonation products, or with another real gas state 
equation. The “Wide-Ranging” detonation equation of state may also be implemented.4 

 
 Ultimately, the particle phase algorithms discussed here must be rewritten for 
dense phase fields. The detonation of a condensed explosive with solid inclusions is a 
dense phase problem. Also, the computer program is currently not properly written even 
in the diffuse limit as regards the nonhomogeneous source terms. The integration scheme 
should be changed to reflect the use of Strang splitting.1 That is to say, the spatial 
integration scheme should be advanced in separate step from the nonhomogeneous terms. 
For the latter step, the integration should be conducted in the temporal manner at each 
grid cell just like an initial value problem. 
 
 
 
REFERENCES 
 
1. Strang, G., “On the construction and comparison of difference schemes”, SIAM J. 

Numer. Anal., Vol. 5, No. 3, pp. 506-517, 1968. 
 
2. Xu, S., Aslam, T. and Stewart, D.S., “High resolution numerical simulation of ideal 
and non-ideal compressible reacting flows with embedded internal boundaries”, 
Combust. Theory Modeling, Vol. 1, pp. 113-142, 1997. 
 
3. Bdzil, J.B., Stewart, D. S. and Jackson, T.L., “Program burn algorithms based on 
detonation shock dynamics: Discrete approximations of detonation flows with 
discontinuous front models”, Journal of Computational Physics, Vol. 174, No. 2, pp. 
870-902, 2001. 
 
4. Wescott, B.L., On Detonation Diffraction in Condensed Phase Explosives, Doctoral 
Dissertation, University at Illinois at Urbana-Champaign, 2001. 
 
5. Stewart, D.S., “Tools for Design of Advanced Explosive Systems and Other 
Investigations on Ignition and Transient Detonation”, Final Report on a Grant from the 
U.S. Air Force Research Laboratory Munition Directorate to the University of Illinois, 
2005. 
 
6. Chen, K.H. and Shuen, J.S., “A Coupled Multi-Block Solution Procedure for Spray 
Combustion in Complex Geometries”, AIAA Paper 93-0108, American Institute for 
Aeronautics and Astronautics, 31st Aerospace Sciences Meeting and Exhibit, January 
1993. 
 
7. Stewart, D.S., Electronic Communication, 2006. 
 
8. Hayes, D.B., “A Pnt Detonation Criterion From Thermal Explosion Theory”, Sixth 
Symposium (International) on Detonation, Pasadena, California, 1976. 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

41 

 
9. Davis, W.C., “Complete equation of state for unreacted solid explosive”, Combustion 

and Flame, Vol. 120, pp. 399-403, 2000. 
 
10. Glaister, P., “An approximate linearised Riemann solver for the Euler equations for 
real gases”, Journal of Computational Physics, Vol. 74, pp. 382-408, 1988. 
 
11. Nance, D.V., “Flux Difference Splitting Algorithms for Real Gas Mixtures”, 
Technical Memorandum, Munitions Directorate, Air Force Research Laboratory, March 
2006. 
 
12. Hirsch, C., Numerical Computation of Internal and External Flows, Vol. 2, John 
Wiley & Sons, New York, 1991. 
 
13. Collela, P. and Woodward, P.R., “The piece-wise parabolic method for gas-
dynamical simulations”, Journal of Computational Physics, Vol. 54, pp. 174-201, 1984. 
 
14. Burden, R.L., Faires, J.D. and Reynolds, A.C., Numerical Analysis, 2nd Ed., Prindle, 
Weber & Schmidt, Boston, 1981. 
 
15. Roe, P.L., “Approximate Riemann solvers, parameter vectors and difference 
schemes”, Journal of Computational Physics, Vol. 43, p. 357, 1981. 
 
16. Akhatov, I.S. and Vainshtein, P.B., “Transition of porous explosive combustion into 
detonation”, Combustion, Explosion and Shock Waves, Vol. 20, No.1, pp. 63-70, 1984. 
 
17. Carlson, D.J. and Hoglund, R.F., “Particle drag and heat transfer in rocket nozzles”, 
AIAA Journal, Vol. 2, No. 11, pp. 1980-1984, 1964. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

42 

APPENDIX A  
SOURCE CODE 
 
Instructions: 
 
 The source code that follows has been developed over a period of six years, but in 
a sporadic manner, as time has permitted. FORTRAN 77 is used throughout the computer 
program, and an in-line coding structure has been used. The programming is designed for 
research and is thus rather crude. The initial conditions (shock-based initiation) are all 
rigidly coded. Different initiation options exist, but they must be enabled or disabled by 
commenting. The detonation reaction rate laws are treated in the same way. The desired 
reaction rate law must be commented in for the initial conditions and for the first and 
second time step segments of the solver. The calorically perfect gas and Jones-Wilkins-
Lee test problems are also activated or deactivated by commenting in/out code segments. 
 
 This computer program is written for standard explosives like HMX for which we 
have plenty of data. Especially for the Hayes equation of state, a great deal of data input 
is required. This data is simply entered directly into the source code. This statement is 
also true as pertains to the Jones-Wilkins-Lee detonation product data as well as the 
particle field data. This code functions in one dimension only: Cartesian, cylindrical or 
spherical. The domain boundaries are contained between x1 and x2. The number of cells 
in the detonation field is given by imax-1. The variable NSTP tells the code how many 
iterations (time steps) to execute while the variable NDMP tells the code how many 
iterations to perform between dump files. The variable IRST controls code execution. 
With IRST set at zero, the code begins with the coded initial conditions. With IRST set at 
one, the code reads the restart.data file to obtain its starting conditions. The IEOS 
variable switches between the mixture equations of state. IEOS equal zero sets calorically 
perfect gas conditions. IEOS at one sets JWL conditions while IEOS equal 2 or 3 sets the 
Hayes-I/JWL and Hayes-II/JWL formulations. The reader should be advised that the pure 
JWL option does not work well. The fault of this equation is that there is not a sufficient 
energy separation between the adiabats to result in detonation. 
 
 This detonation physics program utilizes a number of flags and control parameters 
in order to stabilize code operation. Some of these parameters set tolerances on the 
variables (like the reaction progress variable) to prevent “hunting”. Other flags control 
solution progress. For instance, internal energy updates are lagged by one iteration to 
keep temperature from turning negative. It is also important to observe that the equations 
of state used here have constant specific heat formulations. Over time, this limitation 
should be lifted, but better equation of state data is required to do so. We also zero the 
detonation reaction rate in the far field. As it happens, the flux scheme will erroneously 
allow reaction rate to creep up slowly in the unreacted explosive mass. This effect is 
damaging to the solution and had to be corrected. 
 
c * * * * * * * * * * * * * EZ1_MASTER * * * * * * * * * * * * 

c * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * *  

c Program for 1-D detonation test problem 

c Simple coding structure 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

43 

c Monotonicity check implemented on extrapolation 

c Direct adaptations for calorically perfect gas and JWL 

 

      program ez1_master 

      implicit none 

 

c Parameter statements 

      integer imax 

c     parameter (imax = 20001) 

      parameter (imax = 2001) 

 

      integer npar 

      parameter (npar = 1000) 

 

      real*8 c12 

      parameter (c12 = 0.5d0) 

 

      real*8 c13 

      parameter (c13 = 1d0/3d0) 

 

      real*8 c14 

      parameter (c14 = 0.25d0) 

 

      real*8 c18 

      parameter (c18 = 0.125d0) 

 

      real*8 c23 

      parameter (c23 = 2d0/3d0) 

 

      real*8 c43 

      parameter (c43 = 4d0/3d0) 

 

      real*8 c316 

      parameter (c316 = 3d0/16d0) 

 

      real*8 pi 

      parameter (pi = 3.141592654d0) 

 

c Variable array declarations 

c File I/O 

      character*12 filex 

      character*12 parex 

 

c Debug flags 

      integer idbg1 

      integer idbgf 

      integer idbgs 

      integer idbgp 

 

c Control flags 

      integer irst 

      integer ieos 

      integer igeo 

      integer irxn 

      integer ipar 

      integer idrg 

      integer imach 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

44 

 

      integer iext 

      integer iav 

      integer ilim 

      integer imon 

      integer iefx 

      integer item 

 

c Counters 

      integer i 

      integer n,nn,np 

      integer l,m 

      integer k 

      integer nstart 

      integer nstp 

      integer ndmp 

      integer nfil 

 

c Gas phase data 

      real*8 pamb 

      real*8 mu 

 

c Calorically perfect EOS data 

      real*8 gamm 

      real*8 gam1 

 

c JWL EOS data 

      real*8 r0 

      real*8 aj 

      real*8 bj 

      real*8 cj 

      real*8 cjh 

      real*8 r1 

      real*8 r2 

      real*8 wj 

      real*8 pcj 

 

c Hayes-I EOS data 

      real*8 cvs 

      real*8 gh 

      real*8 h1 

      real*8 nh 

      real*8 rgas 

      real*8 cvg 

      real*8 cpg 

      real*8 nhp1 

      real*8 nhm1 

      real*8 nhm2 

      real*8 t3 

      real*8 t4 

      real*8 t5 

      real*8 t7 

      real*8 alfa 

      real*8 beta 

      real*8 thta 

 

c Mixture EOS tolerances 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

45 

      real*8 ztol1 

      real*8 ztol2 

 

c Detonation data 

      real*8 qdet0 

      real*8 e0 

      real*8 eact 

      real*8 rk 

      real*8 rk1 

      real*8 rk2 

      real*8 pexp 

      real*8 zexp 

      real*8 th1 

      real*8 th2 

 

      real*8 rh1 

      real*8 rh2 

      real*8 rht 

      real*8 rhti 

      real*8 wr1 

      real*8 wr2 

      real*8 wr1r 

      real*8 wr2r 

 

c Grid/Timestep control data 

      real*8 x1 

      real*8 x2 

      real*8 chx 

      real*8 dx 

      real*8 xc 

      real*8 fct 

      real*8 fct1 

      real*8 fct2 

 

      real*8 time 

      real*8 tend 

      real*8 dt 

      real*8 dt0 

      real*8 dt1 

      real*8 dtmx 

      real*8 cfl 

      real*8 offs 

 

c Derived data 

      real*8 et 

      real*8 ra 

      real*8 ra2 

      real*8 ea 

      real*8 za 

      real*8 rz 

      real*8 omz 

      real*8 rxmin 

 

      real*8 bot 

      real*8 bot2 

      real*8 botr 

      real*8 botz 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

46 

 

      real*8 dpdr 

      real*8 dpde 

      real*8 dpdz 

      real*8 a2 

 

      real*8 psgn 

      real*8 kap 

      real*8 eps 

      real*8 epsm 

      real*8 epsp 

      real*8 off 

      real*8 tmp 

 

      real*8 rl,rr 

      real*8 ul,ur 

      real*8 pl,pr 

      real*8 zl,zr 

      real*8 el,er 

      real*8 eel,eer 

      real*8 hhl,hhr 

 

      real*8 dqer,dqwr,dqir 

      real*8 dqeu,dqwu,dqiu 

      real*8 dqep,dqwp,dqip 

      real*8 dqez,dqwz,dqiz 

 

      real*8 denm 

      real*8 dra,drb,drc,drd,dre 

      real*8 dua,dub,duc,dud,due 

      real*8 dpa,dpb,dpc,dpd,dpe 

      real*8 dza,dzb,dzc,dzd,dze 

 

      real*8 rat 

      real*8 phir 

      real*8 phiu 

      real*8 phip 

      real*8 phiz 

      real*8 phi 

      real*8 vhi 

 

      real*8 sqrl 

      real*8 sqrr 

      real*8 rsumi 

      real*8 rav 

      real*8 ri 

      real*8 uav 

      real*8 zav 

      real*8 eav 

      real*8 hav 

      real*8 aav 

      real*8 pav 

 

      real*8 delr 

      real*8 delv 

      real*8 delp 

      real*8 delz 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

47 

 

      real*8 detr 

      real*8 pest 

 

c Temperature estimation variables 

      real*8 tk0 

      real*8 dtkmx 

      real*8 denmx 

      real*8 numr 

      real*8 e0cr 

      real*8 eta 

      real*8 rs 

      real*8 rg 

      real*8 de1 

      real*8 de2 

      real*8 de3 

      real*8 de4 

      real*8 de5 

      real*8 de6 

 

c Particle phase data 

      real*8 xp1 

      real*8 xp2 

      real*8 dxp 

      real*8 rdp 

      real*8 dip 

      real*8 rop 

      real*8 pcp 

      real*8 rep 

      real*8 ppr 

      real*8 tcon 

      real*8 crppr 

      real*8 nup 

      real*8 hp 

      real*8 cdp 

      real*8 pum 

      real*8 pam 

      real*8 delu 

      real*8 adelu 

      real*8 hevol 

      real*8 pvol 

      real*8 cvol 

      real*8 p0mas 

      real*8 pmass 

      real*8 alf1 

      real*8 alf2 

      real*8 alf21 

      real*8 cd1 

      real*8 cd2 

      real*8 cd0 

      real*8 mach 

      real*8 dtp 

 

c Array declarations 

      real*8 x(imax) 

      real*8 r(0:imax) 

      real*8 p(0:imax) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

48 

      real*8 u(0:imax) 

      real*8 z(0:imax) 

      real*8 ei(0:imax) 

      real*8 a(0:imax) 

      real*8 rxr(0:imax) 

 

      real*8 c(8) 

      real*8 top(8) 

      real*8 topr(8) 

      real*8 topz(8) 

 

      real*8 rp(0:imax) 

      real*8 pp(0:imax) 

      real*8 up(0:imax) 

      real*8 zp(0:imax) 

      real*8 eip(0:imax) 

      real*8 etp(0:imax) 

      real*8 ap(0:imax) 

 

      real*8 tk(imax) 

      real*8 dtk(imax) 

 

      real*8 zzl(imax) 

      real*8 zzr(imax) 

 

      real*8 qv(imax,4) 

      real*8 qvp(imax,4) 

 

      real*8 sg(imax,4) 

      real*8 srx(imax,4) 

      real*8 sp(imax,4) 

      real*8 s(imax,4) 

 

      real*8 aeg(4) 

      real*8 evr(4,4) 

      real*8 cwm(4) 

 

      real*8 chk1(4,4) 

      real*8 chk2(4,4) 

 

      real*8 dq(4) 

      real*8 v1(4) 

      real*8 vn(4) 

 

      real*8 fl(4) 

      real*8 fr(4) 

      real*8 fn(imax,4) 

 

      real*8 dqv(4) 

 

      real*8 derv(imax,2) 

 

c Particle arrays 

      integer pcel(npar) 

      real*8 px(npar) 

      real*8 pu(npar) 

      real*8 pa(npar) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

49 

      real*8 pxp(npar) 

      real*8 pup(npar) 

      real*8 pq(npar) 

      real*8 ptk(npar) 

      real*8 ptkp(npar) 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c     Main Data Entry Section 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

 

c Grid data 

      x1    = 0d0 

c     x2    = 200d0 

 

      x2    = 3.6d-2 

      chx   = 3.8d-2 

 

c CPG EOS data 

      gamm = 1.4d0 

      pamb = 101325d0 

      rgas = 287d0 

 

c Extrapolation control data 

      kap  = 1d0/3d0 

c     kap = -1d0 

      eps  = 1d-12 

 

c EOS control tolerances 

      ztol1 = 1d-2 

c     ztol1 = 0d0 

      ztol2 = 0.99d0 

c     ztol2 = 1d0 

 

c HMX Hayes EOS Data (Xu) 

c     r0    = 1891d0 

c     h1    = 1.35d10 

c     cvs   = 1.5d3 

c     gh    = 2.1d3 

c     nh    = 9.8d0 

c     tk0   = 3d2 

 

c HMX JWL EOS Data (Zukas/Xu) 

c     aj   = 7.783d11 

c     bj   = 0.07071d11 

c     cj   = 0.00643d11 

c     r1   = 4.2d0 

c     r2   = 1d0 

c     wj   = 0.3d0 

c     cvg  = (2.4d0 - 0.28d0*r0*1d-3 - 1.3d0)*1d3 

 

c NM Hayes EOS Data 

c     r0   = 1.13d3 

c     h1   = 1.32d9 

c     cvs  = 1.446d3 

c     gh   = 1.356d3 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

50 

c     nh   = 7.144d0 

c     tk0  = 293d0 

 

c NM JWL EOS Data 

c     aj   = 209.2d9 

c     bj   = 5.689d9 

c     cj   = 0.77d9 

c     r1   = 4.4d0 

c     r2   = 1.2d0 

c     wj   = 0.3d0 

c     cvg  = 1.3d3 

 

c RDX Hayes EOS Data 

      r0   = 1.6d3 

      h1   = 13d9 

      cvs  = 1.163d3 

      gh   = 1.356d3 

      nh   = 6.3d0 

      tk0  = 300d0 

 

c RDX JWL EOS Data 

      aj   = 573.187d9 

      bj   = 14.639d9 

      cj   = 0.77d9 

      r1   = 4.6d0 

      r2   = 1.4d0 

      wj   = 0.32d0 

      cvg  = 1.2d3 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Detonation reaction data 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c CPG Test 

      eact  = 10d0 

      rk    = 16.418d0 

c     th1   = 0d0 

c     th2   = 0d0 

c     rxmin = rk*dexp(-eact) 

c     qdet0 = 25d0 

 

c HMX Test 

c     pcj   = 42d9 

c     rk1   = 110d6 

c     rk2   = 0d0 

c     pexp  = 3.5d0 

c     zexp  = 0.93d0 

c     th1   = 0d0 

c     th2   = 0d0 

c     rxmin = rk1*((pamb/pcj)**pexp) 

c     qdet0 = (7.91d0 - 4.33d0*(r0*1d-3 - 1.3d0)**2 

c    &         -0.934d0*(r0*1d-3 - 1.3d0))*1d6 

 

c NM Test 

c     pcj   = 12.5d9 

c     pexp  = 1d0 

c     zexp  = 0.95d0 

c     rk1   = 7.75d10 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

51 

c     rk2   = 1.5d12 

c     th1   = 14500d0 

c     th2   = 29700d0 

c     rxmin = rk1*dexp(-th1/tk0) 

c     qdet0 = 4.530d5 

 

c RDX Test 

      pcj   = 26.5d9 

      rk1   = 110d6 

      rk2   = 0d0 

      pexp  = 3.5d0 

      zexp  = 0.93d0 

      th1   = 0d0 

      th2   = 0d0 

      rxmin = rk1*((pamb/pcj)**pexp) 

      qdet0 = 5.375d6 

 

c Particle data 

      xp1   = 1.0d-2 

      xp2   = 5.9d-2 

      pmass = 4.3d0 

      rop   = 7860d0 

      rdp   = 280d-6 

      pcp   = 446d0 

      mu    = 1.7d-5 

c     mu    = 1.0d-3 

      tcon  = 2.57d-2 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Code control data and flags 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Data 

      off    = 1d-6 

      cfl    = 0.5d0 

      n      = 0 

      nfil   = 0 

      nstart = 0 

      nstp   = 10 

      ndmp   = 1 

      dtmx   = 1d-2 

      time   = 0d0 

      tend   = 50d0 

 

c Flags 

      irst  = 1 

      iav   = 1 

      iext  = 1 

      ilim  = 1 

      ieos  = 3 

      igeo  = 1 

      irxn  = 1 

      iefx  = 2 

      ipar  = 0 

      idrg  = 1 

      imach = 1 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

52 

 

c Debug control 

      idbg1 = 0 

      idbgf = 0 

      idbgs = 0 

      idbgp = 0 

          

      write(*,*) ' Code Control Data:' 

      write(*,*) ' nstp  = ',nstp 

      write(*,*) ' ndmp  = ',ndmp 

      write(*,*) ' tend  = ',tend 

      if (ipar .eq. 1) write(*,*) ' npar  = ',npar 

      write(*,*) ' ' 

      write(*,*) ' Flags:' 

      write(*,*) ' irst  = ',irst 

      write(*,*) ' iav   = ',iav 

      write(*,*) ' iext  = ',iext 

      write(*,*) ' ilim  = ',ilim 

      write(*,*) ' ' 

      write(*,*) ' ieos  = ',ieos 

      write(*,*) ' igeo  = ',igeo 

      write(*,*) ' irxn  = ',irxn 

      write(*,*) ' iefx  = ',iefx 

      write(*,*) ' ' 

      write(*,*) ' ipar  = ',ipar 

      write(*,*) ' idrg  = ',idrg 

      write(*,*) ' imach = ',imach 

      write(*,*) ' ' 

 

      pause 

 

c Derived data 

c Thermal data 

      cpg   = rgas + cvg 

      ppr   = cpg*tcon/mu 

      crppr = ppr**c13 

 

c EOS Parameters 

      rh1  = r1*r0 

      rh2  = r2*r0 

      wr1  = wj/rh1 

      wr1r = wr1/r0 

      wr2  = wj/rh2 

      wr2r = wr2/r0 

      cjh  = cj*(r0**(-(1d0 + wj))) 

 

      nhp1 = nh + 1d0 

      alfa = nh - 1d0 

      nhm1 = alfa 

      nhm2 = nh - 2d0 

      e0   = cvg*tk0 

 

c Hayes-I EOS 

      t3   = cvs*tk0*gh/r0 

      t4   = h1/r0/nh/alfa 

      t5   = pamb/gh + t4 

      t7   = pamb/gh + beta + t4 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

53 

      thta = t3 - pamb/r0 

      beta = thta + alfa*t4 

 

c Compute coefficients for Hayes pressure derivatives 

      c(1)  =  1d0 

      c(2)  =  beta 

      c(3)  = -t4 

      c(4)  =  t5 

      c(5)  =  aj 

      c(6)  =  bj 

      c(7)  =  qdet0 + e0 

      c(8)  =  h1/gh/nh 

 

c Particle phase parameters 

      dip   = 2d0*rdp 

      p0mas = c43*pi*rop*rdp*rdp*rdp  

      pvol  = pmass/rop 

      if (chx .le. x2) then 

        write(*,*) ' ' 

        write(*,*) ' chx < x2.' 

        write(*,*) ' ' 

        stop 

      else 

        dx    = chx - x2 

      endif 

      cvol  = c43*pi*x2*x2*x2 

c     cvol   = hevol + pvol 

      alf2  = pvol/cvol 

      alf1  = 1d0 - alf2 

 

      if (ipar .eq. 1 .and. alf1 .eq. 0d0) then 

        write(*,*) ' ' 

        write(*,*) ' alf1 = 0!' 

        write(*,*) ' ' 

        stop 

      endif 

 

      alf21 = alf2/alf1 

 

c Other constants 

      epsm = c14*(1d0 - kap) 

      epsp = c14*(1d0 + kap) 

      gam1 = gamm - 1d0 

 

c Set up the solver report file 

      open(90,file='rpt.txt',form='formatted') 

      write(90,*) ' ********** Detonation Solver Report File 

**********' 

      write(90,*) ' ' 

      write(90,*) ' Reaction Data:' 

      write(90,*) ' qdet  = ',qdet0 

      write(90,*) ' eact  = ',eact 

      write(90,*) ' rk    = ',rk 

      write(90,*) ' rk1   = ',rk1 

      write(90,*) ' rk2   = ',rk2 

      write(90,*) ' pexp  = ',pexp 

      write(90,*) ' zexp  = ',zexp 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

54 

      write(90,*) ' Pcj   = ',pcj 

      write(90,*) ' th1   = ',th1 

      write(90,*) ' th2   = ',th2 

      write(90,*) ' ' 

      write(90,*) ' rxmin = ',rxmin 

      write(90,*) ' ' 

      write(90,*) ' EOS Control Data:' 

      write(90,*) ' ztol1 = ',ztol1 

      write(90,*) ' ztol2 = ',ztol2 

      write(90,*) ' ' 

      write(90,*) ' CPG EOS Data:' 

      write(90,*) ' gamm = ',gamm 

      write(90,*) ' gam1 = ',gam1 

      write(90,*) ' ' 

      write(90,*) ' Hayes-I EOS Data:' 

      write(90,*) ' H1    = ',h1 

      write(90,*) ' Cvs   = ',cvs 

      write(90,*) ' g     = ',gh 

      write(90,*) ' N     = ',nh 

      write(90,*) ' T0    = ',tk0 

      write(90,*) ' ' 

      do nn = 1,8 

        write(90,*) ' c(',nn,') = ',c(nn) 

      enddo  

      write(90,*) ' ' 

      write(90,*) ' alfa = ',alfa 

      write(90,*) ' beta = ',beta 

      write(90,*) ' thta = ',thta 

      write(90,*) ' t3   = ',t3 

      write(90,*) ' t4   = ',t4 

      write(90,*) ' t5   = ',t5 

      write(90,*) ' t7   = ',t7 

      write(90,*) ' ' 

      write(90,*) ' JWL EOS Data:' 

      write(90,*) ' r0   = ',r0 

      write(90,*) ' A    = ',aj 

      write(90,*) ' B    = ',bj 

      write(90,*) ' C    = ',cj 

      write(90,*) ' R1   = ',r1 

      write(90,*) ' R2   = ',r2 

      write(90,*) ' W    = ',wj 

      write(90,*) ' Cvg  = ',cvg 

      write(90,*) ' Cpg  = ',cpg 

      write(90,*) ' e0   = ',e0 

      write(90,*) ' ' 

      write(90,*) ' Particle Data:' 

      write(90,*) ' pmass = ',pmass 

      write(90,*) ' rop   = ',rop 

      write(90,*) ' rdp   = ',rdp 

      write(90,*) ' dip   = ',dip 

      write(90,*) ' mu    = ',mu 

      write(90,*) ' tcon  = ',tcon 

      write(90,*) ' ppr   = ',ppr 

      write(90,*) ' p0mas = ',p0mas 

      write(90,*) ' hevol = ',hevol 

      write(90,*) ' pvol  = ',pvol 

      write(90,*) ' cvol  = ',cvol 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

55 

      write(90,*) ' alf1  = ',alf1 

      write(90,*) ' alf2  = ',alf2 

      write(90,*) ' ' 

      write(90,*) ' Other Data:' 

      write(90,*) ' kap  = ',kap 

      write(90,*) ' epsm = ',epsm 

      write(90,*) ' epsp = ',epsp 

      write(90,*) ' ' 

      close(90) 

 

      write(*,*) ' ' 

      write(*,*) ' Report file ready.' 

      write(*,*) ' ' 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Grid Generation Section 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

      dx    = (x2 - x1)/(imax-1) 

      offs  = 0.1d0 

      do i = 1,imax 

        x(i) = x1 + (i-1)*dx 

c       write(*,*) ' i = ',i,' x = ',x(i) 

      enddo 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Initial Conditions and Restart File Section  

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Set initial conditions (no restart) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

      if (irst .eq. 0) then 

 

c Set time zero primitive variables 

        do i = 1,imax-1 

          xc = c12*(x(i) + x(i+1)) 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c CPG EOS ICs 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

          if (ieos .eq. 0) then 

            r(i)    = 1d0/(1d0 + 3d0*dexp(-xc*xc)) 

            p(i)    = 1d0 

            u(i)    = 0d0 

            z(i)    = 0d0 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c JWL EOS ICs 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

          else if (ieos .eq. 1) then 

            r(i)    = 1.2d0 

c           p(i)    = 25d0*pamb/(1.00001d0 - dexp(-xc*xc)) 

 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

56 

            p(i)    = ((x2-xc)*(40d0*pamb/(1.00001d0 - dexp(-xc*xc))) 

     &              + x2*pamb)/x2 

 

c           write(70,*) xc,' ',p(i) 

 

c           if (xc .lt. offs) then 

c             p(i) = fct*(xc-offs)*(xc-offs) + pamb 

c           else 

c             p(i) = pamb 

c           endif 

 

            u(i)    = 0d0 

            z(i)    = 0d0 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Hayes-I/JWL EOS ICs 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

          else if (ieos .eq. 2) then 

            r(i)    = r0 

 

c           p(i)    = 25d0*pamb/(1.00001d0 - dexp(-xc*xc)) 

 

c           p(i)    = ((x2-xc)*(25d0*pamb/(1.00001d0 - dexp(-xc*xc))) 

c    &              + x2*pamb)/x2 

 

c           p(i)    = pamb 

 

c HMX or NM 

            p(i)    = 2d0*pcj*dexp(-xc*xc/0.001d0/0.001d0) + pamb 

 

            u(i)    = 0d0 

            z(i)    = 0d0 

            tk(i)   = tk0 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Hayes-II/JWL EOS ICs 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

          else if (ieos .eq. 3) then 

            r(i)    = r0 

 

c HMX/RDX/NM 

c           p(i)    = 2d0*pcj*dexp(-xc*xc/0.004d0/0.004d0) + pamb 

 

            if (i .le. 100) then 

              p(i)    = 5d0*pcj + pamb 

            else 

              p(i)    = pamb 

            endif 

 

c NM 

c           p(i)    = 2d0*pcj*dexp(-xc*xc/0.0005d0/0.0005d0) + pamb 

 

            u(i)    = 0d0 

 

            z(i)    = 0d0 

 

            tk(i)   = (p(i) - pamb)/cvs/gh + tk0 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

57 

 

          else 

            write(*,*) ' ' 

            write(*,*) ' Unknown EOS' 

            write(*,*) ' ' 

            stop 

          endif           

 

        enddo 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Particle ICs 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

        if (ipar .eq. 1) then  

 

c Check particle bounds 

          if (xp1 .lt. x1 .or. xp2 .gt. x2) then 

            write(*,*) ' ' 

            write(*,*) ' Particle X limits are wrong.' 

            write(*,*) ' ' 

            stop 

          endif 

 

          dxp = (xp2 - xp1)/(npar - 1) 

          do np = 1,npar 

            px(np)  = xp1 + (np-1)*dxp 

            pu(np)  = 0d0 

            ptk(np) = tk0 

            pa(np)  = 0d0 

            pq(np)  = 0d0 

c           write(*,*) px(np),' ',pu(np),' ',pa(np) 

          enddo 

c         pause 

          write(*,*) ' ' 

          write(*,*) ' Particles ready.' 

          write(*,*) ' ' 

 

        endif 

 

      else if (irst .eq. 1) then 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Read the restart file 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

        write(*,*) ' Reading restart file.' 

        open(40,file='restart.data',form='unformatted') 

        read(40) nstart 

        read(40) nfil 

        read(40) time 

        do i = 1,imax-1 

          read(40) r(i),p(i),u(i),z(i) 

        enddo 

        close(40) 

 

      else 

        write(*,*) ' ' 

        write(*,*) ' Unknown restart option.' 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

58 

        write(*,*) ' ' 

      endif 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Compute initial derived flow variables for the cells 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

      do i = 1,imax-1 

 

        if (ieos .eq. 0) then 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c CPG EOS internal energy and pressure derivatives 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

          ei(i) = p(i)/r(i)/gam1 - z(i)*qdet0 

 

          dpdr = gam1*ei(i) + gam1*z(i)*qdet0 

          dpde = gam1*r(i) 

          dpdz = gam1*r(i)*qdet0 

 

        else if (ieos .eq. 1) then 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c JWL EOS internal energy and pressure derivatives 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

          rht  = r(i)/r0 

          rhti = 1d0/rht 

          ri   = 1d0/r(i) 

 

          tmp  = p(i) - aj*(1d0 - wr1*r(i))*dexp(-rh1*ri) 

     &                - bj*(1d0 - wr2*r(i))*dexp(-rh2*ri) 

 

          ei(i) = tmp/wj*ri - z(i)*qdet0 

 

          tmp = aj*(rh1*ri*ri - wj*ri - wj/rh1)*dexp(-rh1*ri) 

          tmp = tmp + bj*(rh2*ri*ri - wj*ri - wj/rh2)*dexp(-rh2*ri) 

            

          dpdr = tmp + wj*ei(i) + wj*z(i)*qdet0  

          dpde = wj*r(i) 

          dpdz = wj*r(i)*qdet0 

 

        else if (ieos .eq. 2) then 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Hayes-I/JWL EOS internal energy and pressure derivatives 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

          ra    = r(i) 

          ra2   = ra*ra 

          za    = z(i) 

          rz    = ra*za 

          omz   = 1d0 - za 

 

c Solid phase limit 

          if (za .le. ztol1) then 

 

            ei(i) = p(i)/gh + beta*r0/ra + t4*((ra/r0)**alfa) - t7 

 

            dpdr = beta*r0*gh/ra2  



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

59 

     &           - alfa*gh*t4*(ra**(alfa-1d0))/(r0**alfa) 

 

            dpde = gh 

 

c Mixed phases 

          else if (ztol1 .lt. za .and. za .lt. ztol2) then 

 

c Evaluate denominator functions 

            bot   = omz/gh + 1d0/wj/ra 

            if (bot .lt. 1d-10) then 

              write(*,*) ' ' 

              write(*,*) ' Zero denonimator term.' 

              write(*,*) ' ' 

              stop 

            endif 

            bot2  = bot*bot 

            botr  = -1d0/wj/ra2 

 

c Evaluate numerator functions 

            top(2)  = omz - r0/ra 

            top(3)  = (omz**nh)*((ra/r0)**alfa) 

            top(4)  = omz 

            top(5)  = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz) 

            top(6)  = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz) 

            top(7)  = za 

 

c Compute internal energy 

            ei(i) = bot*p(i) 

            do nn = 2,7 

              ei(i) = ei(i) - c(nn)*top(nn) 

            enddo 

            top(1) = ei(i) 

 

c Compute derivatives for numerator functions 

            topr(1)  = 0d0 

            topr(2)  = r0/ra2 

            topr(3)  = alfa/r0*(omz**nh)*((ra/r0)**(alfa-1d0)) 

            topr(4)  = 0d0 

            topr(5)  = (rh1/wj/rz - 1d0/wj - 1d0)*dexp(-rh1/rz)/ra2 

            topr(6)  = (rh2/wj/rz - 1d0/wj - 1d0)*dexp(-rh2/rz)/ra2 

            topr(7)  = 0d0 

 

c Compute density and internal energy derivatives of pressure 

            dpdr = 0d0 

            do nn = 1,7 

              dpdr = dpdr + c(nn)*(bot*topr(nn) - botr*top(nn)) 

            enddo 

            dpdr = dpdr/bot2 

            dpde = 1d0/bot 

 

c Gas phase limit 

          else 

 

            ei(i) = p(i)/wj/ra  

     &            - aj*(1d0/wj/ra - 1d0/rh1)*dexp(-rh1/ra) 

     &            - bj*(1d0/wj/ra - 1d0/rh2)*dexp(-rh2/ra)  

     &            - qdet0 - e0 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

60 

 

            dpdr  = wj*ei(i)  

     &            + aj*(rh1/ra2 - wj/ra - wj/rh1)*dexp(-rh1/ra) 

     &            + bj*(rh2/ra2 - wj/ra - wj/rh2)*dexp(-rh2/ra) 

     &            + wj*(qdet0 + e0) 

 

            dpdz  = aj*(rh1/ra - wj - wj*ra/rh1)*dexp(-rh1/ra) 

     &            + bj*(rh2/ra - wj - wj*ra/rh2)*dexp(-rh2/ra) 

     &            + ra*wj*(qdet0 + e0) 

 

            dpde  = wj*ra 

 

          endif 

 

        else if (ieos .eq. 3) then 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Hayes-II/JWL EOS internal energy and pressure derivatives 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

          ra    = r(i) 

          ra2   = ra*ra 

          za    = z(i) 

          rz    = ra*za 

          omz   = 1d0 - za 

 

c Solid phase limit 

          if (za .le. ztol1) then 

 

            ei(i) = p(i)/gh + beta*r0/ra + t4*((ra/r0)**alfa) - t7 

     &            - h1/gh/nh*(((ra/r0)**nh) - 1d0) 

 

            dpdr  = beta*r0*gh/ra2  

     &            - alfa*gh*t4*(ra**(alfa-1d0))/(r0**alfa) 

     &            + h1/r0*((ra/r0)**nhm1) 

 

            dpde  = gh 

 

c Mixed phases 

          else if (ztol1 .lt. za .and. za .lt. ztol2) then 

 

c Evaluate denominator functions 

            bot   = omz/gh + 1d0/wj/ra 

            if (bot .lt. 1d-10) then 

              write(*,*) ' ' 

              write(*,*) ' Zero denonimator term.' 

              write(*,*) ' ' 

              stop 

            endif 

            bot2  = bot*bot 

            botr  = -1d0/wj/ra2 

 

c Evaluate numerator functions 

            top(2)  = omz - r0/ra 

            top(3)  = (omz**nh)*((ra/r0)**alfa) 

            top(4)  = omz 

            top(5)  = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz) 

            top(6)  = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

61 

            top(7)  = za 

            top(8)  = (omz**nhp1)*((ra/r0)**nh) + za - 1d0 

 

c Compute internal energy 

            ei(i) = bot*p(i) 

            do nn = 2,8 

              ei(i) = ei(i) - c(nn)*top(nn) 

            enddo 

            top(1) = ei(i) 

 

c Compute derivatives for numerator functions 

            topr(1)  = 0d0 

            topr(2)  = r0/ra2 

            topr(3)  = alfa/r0*(omz**nh)*((ra/r0)**(alfa-1d0)) 

            topr(4)  = 0d0 

            topr(5)  = (rh1/wj/rz - 1d0/wj - 1d0)*dexp(-rh1/rz)/ra2 

            topr(6)  = (rh2/wj/rz - 1d0/wj - 1d0)*dexp(-rh2/rz)/ra2 

            topr(7)  = 0d0 

            topr(8)  = nh/r0*(omz**nhp1)*((ra/r0)**nhm1) 

 

c Compute density and internal energy derivatives of pressure 

            dpdr = 0d0 

            do nn = 1,8 

              dpdr = dpdr + c(nn)*(bot*topr(nn) - botr*top(nn)) 

            enddo 

            dpdr = dpdr/bot2 

            dpde = 1d0/bot 

 

c Gas phase limit 

          else 

 

            ei(i) = p(i)/wj/ra  

     &            - aj*(1d0/wj/ra - 1d0/rh1)*dexp(-rh1/ra) 

     &            - bj*(1d0/wj/ra - 1d0/rh2)*dexp(-rh2/ra)  

     &            - qdet0 - e0 

 

            dpdr  = wj*ei(i)  

     &            + aj*(rh1/ra2 - wj/ra - wj/rh1)*dexp(-rh1/ra) 

     &            + bj*(rh2/ra2 - wj/ra - wj/rh2)*dexp(-rh2/ra) 

     &            + wj*(qdet0 + e0) 

 

            dpdz  = aj*(rh1/ra - wj - wj*ra/rh1)*dexp(-rh1/ra) 

     &            + bj*(rh2/ra - wj - wj*ra/rh2)*dexp(-rh2/ra) 

     &            + ra*wj*(qdet0 + e0) 

 

            dpde  = wj*ra 

 

          endif 

 

        else 

          write(*,*) ' ' 

          write(*,*) ' Unknown EOS' 

          write(*,*) ' ' 

          stop 

        endif 

 

c Compute the speed of sound 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

62 

        if (dpdr .lt. 0d0) dpdr = dabs(dpdr) 

        a2     = dpdr + p(i)*dpde/r(i)/r(i) 

 

        if (a2 .lt. 0d0) then 

          write(*,*) ' ' 

          write(*,*) ' Negative initial squared sound speed!' 

          write(*,*) ' i = ',i 

          write(*,*) ' ' 

          stop 

        endif 

        a(i)   = dsqrt(a2) 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Initial reaction rate 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Floor on 1 - z near 0 

        if (z(i) .gt. ztol2) then 

          omz = 0d0 

        else 

          omz = 1d0 - z(i) 

        endif 

 

c Test Rate 1 

c       rxr(i) = rk1*dsqrt(omz) 

c       if (p(i,j) - 1d9 .lt. 0d0) rxr(i) = 0d0 

c       if (p(i,j) - 1d9 .eq. 0d0) rxr(i) = 0.5d0*rxr(i) 

 

c CPG Test Rate 

c       rxr(i) = rk*omz*dexp(-eact*r(i)/p(i)) - rxmin 

 

c HMX Test Rate 

c       rxr(i) = rk1*(omz**zexp)*((p(i)/pcj)**pexp) - rxmin 

c       if (rxr(i) .lt. 0d0) rxr(i) = 0d0 

 

c NM Test Rate 

c       rxr(i) = (rk1*dexp(-th1/tk(i))*omz 

c    &         +  rk2*dexp(-th2/tk(i))*z(i))*(omz**zexp) - rxmin 

c       if (rxr(i) .lt. 0d0) rxr(i) = 0d0 

 

c RDX Test Rate 

        rxr(i) = rk1*(omz**zexp)*((p(i)/pcj)**pexp) - rxmin 

        if (rxr(i) .lt. 0d0) rxr(i) = 0d0 

 

      enddo 

 

c Write the initial conditions files 

      if (irst .eq. 0) then 

        open(21,file='heic.dat',form='formatted') 

 70     format(1x,d12.6,1x,d12.6,1x,d12.6,1x,d12.6,1x,d12.6,1x,d12.6, 

     &         1x,d12.6,1x,d12.6) 

 

 72     format(1x,d12.6,1x,d12.6,1x,d12.6,1x,d12.6,1x,d12.6,1x,d12.6, 

     &         1x,d12.6,1x,d12.6,1x,d12.6) 

 

        do i = 1,imax-1 

          xc = c12*(x(i) + x(i+1)) 

          write(21,72) xc,r(i),u(i),p(i),z(i),ei(i),a(i),rxr(i),tk(i) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

63 

        enddo 

        close(21) 

        write(*,*) ' ICs ready.' 

        write(*,*) ' ' 

 

        if (ipar .eq. 1) then 

          open(21,file='paic.dat',form='formatted') 

          do np = 1,npar 

            write(21,*) px(np),' ',0d0,' ',pu(np) 

          enddo 

          close(21) 

        endif 

      endif 

 

      pause 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Set the internal energy correction and scale variables 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

      e0cr = 0d0 

      eta  = 0.999d0 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Main Solver Loop 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

      do while (n .lt. nstp .and. time .lt. tend) 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Allocate particles to cells 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

        if (ipar .eq. 1) then 

          do np = 1,npar 

            pcel(np) = int((px(np) - x1)/dx) + 1 

c           write(*,*) ' px(',np,') = ',px(np) 

c           write(*,*) ' pcel(',np,') = ',pcel(np) 

c           write(*,*) ' ' 

          enddo 

 

          pum = 0d0 

          pam = 0d0 

          do np = 1,npar 

            if (dabs(pu(np)) .gt. pum) pum = dabs(pu(np)) 

            if (dabs(pa(np)) .gt. pam) pam = dabs(pa(np)) 

          enddo 

        endif 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Compute time step 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

        dt = 1d2 

        do i = 1,imax-1 

          dx  = x(i+1) - x(i) 

          dt0 = dx/(dabs(u(i)) + a(i))         



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

64 

          if (ipar .eq. 1) then 

            dt1 = dx/(dabs(u(i)) + pum)         

            dt0 = min(dt0,dt1) 

c           dt1 = 2d1*dx/pam 

c           dt0 = min(dt0,dt1) 

          endif 

          if (dt0 .lt. dt) dt = dt0 

        enddo 

        dt = cfl*dt 

        dt = min(dt,dtmx) 

 

        if (idbg1 .eq. 1) then 

          write(*,*) ' dt = ',dt 

          write(*,*) ' ' 

        endif 

 

c Set boundary conditions 

c Symmetric at x = 0 

        r(0)  =  r(1) 

        u(0)  = -u(1) 

        p(0)  =  p(1) 

        z(0)  =  z(1) 

        ei(0) =  ei(1) 

 

c Fixed at x = xmax 

c       r(imax) = 1d0 

c       u(imax) = 0d0 

c       p(imax) = 1d0 

c       z(imax) = 0d0 

c       ei(imax) = p(imax)/r(imax)/gam1 

 

c Extrapolated at x = xmax 

        r(imax)  = r(imax-1) 

        u(imax)  = u(imax-1) 

        p(imax)  = p(imax-1) 

        z(imax)  = z(imax-1) 

        ei(imax) = ei(imax-1) 

 

        if (idbg1 .eq. 1) then 

        write(*,*) ' BCs:' 

        write(*,*) ' r(0)  = ',r(0) 

        write(*,*) ' u(0)  = ',u(0) 

        write(*,*) ' p(0)  = ',p(0) 

        write(*,*) ' z(0)  = ',z(0) 

        write(*,*) ' ei(0) = ',ei(0) 

        write(*,*) ' ' 

        write(*,*) ' r(imax)  = ',r(imax) 

        write(*,*) ' u(imax)  = ',u(imax) 

        write(*,*) ' p(imax)  = ',p(imax) 

        write(*,*) ' z(imax)  = ',z(imax) 

        write(*,*) ' ei(imax) = ',ei(imax) 

        write(*,*) ' ' 

        endif 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Minimum reaction rate taken at cell imax-1 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

65 

c Floor on 1 - z near 0 

        if (z(imax-1) .gt. ztol2) then 

          omz = 0d0 

        else 

          omz = 1d0 - z(imax-1) 

        endif 

 

c HMX or RDX Test 

        rxmin = rk1*(omz**zexp)*((p(imax-1)/pcj)**pexp) 

c NM Test 

c       rxmin = (rk1*dexp(-th1/tk(imax-1))*omz 

c    &        +  rk2*dexp(-th2/tk(imax-1))*z(imax-1))*(omz**zexp) 

 

c       write(*,*) ' rxmin = ',rxmin 

c       write(*,*) ' rxr   = ',rxr(imax-1) 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Compute conservative variables; assemble source terms  

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

        do i = 1,imax-1 

          qv(i,1) = r(i) 

          qv(i,2) = r(i)*u(i) 

 

          et      = ei(i) + 0.5d0*u(i)*u(i) 

 

          qv(i,3) = r(i)*et 

          qv(i,4) = r(i)*z(i) 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Compute the source vectors 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Geometric 

          xc = c12*(x(i) + x(i+1)) 

 

          sg(i,1)   = -r(i)*u(i)/xc 

          sg(i,2)   = -r(i)*u(i)*u(i)/xc 

          sg(i,3)   = -u(i)*(r(i)*et + p(i))/xc 

          sg(i,4)   = -r(i)*u(i)*z(i)/xc 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Reaction rate 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Floor on 1 - z near 0 

          if (z(i) .gt. ztol2) then 

            omz = 0d0 

          else 

            omz = 1d0 - z(i) 

          endif 

 

c CPG Test Rate 

c         rxr(i) = rk*omz*dexp(-eact*r(i)/p(i)) - rxmin 

 

c HMX Test Rate 

c         rxr(i) = rk1*(omz**zexp)*((p(i)/pcj)**pexp) - rxmin 

c         if (rxr(i) .lt. 0d0) rxr(i) = 0d0 

 

c NM Test Rate 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

66 

c         rxr(i) = (rk1*dexp(-th1/tk(i))*omz 

c    &           +  rk2*dexp(-th2/tk(i))*z(i))*(omz**zexp) - rxmin 

c         if (rxr(i) .lt. 0d0) rxr(i) = 0d0 

 

c RDX Test Rate 

          rxr(i) = rk1*(omz**zexp)*((p(i)/pcj)**pexp) - rxmin 

          if (rxr(i) .lt. 0d0) rxr(i) = 0d0 

 

c Reaction rate terms 

          srx(i,1)  = 0d0 

          srx(i,2)  = 0d0 

          srx(i,3)  = 0d0 

          srx(i,4)  = r(i)*rxr(i) 

 

c Particle phase 

          sp(i,1)   = 0d0 

          sp(i,2)   = 0d0 

          sp(i,3)   = 0d0 

          sp(i,4)   = 0d0 

 

        enddo 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Compute particle phase coupling terms 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

        if (ipar .eq. 1) then 

          do np = 1,npar 

 

c Momentum 

            sp(pcel(np),2) = sp(pcel(np),2) - p0mas*pa(np) 

 

c Energy 

            sp(pcel(np),3) = sp(pcel(np),3) - pq(np) 

 

          enddo 

        endif 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Compute the total source vector 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

        do i = 1,imax-1 

 

c         if (sp(i,2) .ne. 0d0) then 

c           write(*,*) ' i = ',i,' sp = ',sp(i,2) 

c         endif 

 

          do m = 1,4 

            s(i,m) = igeo*sg(i,m) + irxn*srx(i,m) + ipar*sp(i,m) 

          enddo 

 

          if (idbgs .eq. 1) then 

            write(*,*) ' i  = ',i 

            write(*,*) ' q1 = ',qv(i,1) 

            write(*,*) ' q2 = ',qv(i,2) 

            write(*,*) ' q3 = ',qv(i,3) 

            write(*,*) ' q4 = ',qv(i,4) 

            write(*,*) ' ' 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

67 

            write(*,*) ' s1 = ',s(i,1) 

            write(*,*) ' s2 = ',s(i,2) 

            write(*,*) ' s3 = ',s(i,3) 

            write(*,*) ' s4 = ',s(i,4) 

            write(*,*) ' ' 

            pause 

          endif 

        enddo 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Compute the numerical flux at each grid point 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

 71   format(2x,d12.6,2x,d12.6,2x,d12.6,2x,d12.6) 

 

        do i = 1,imax 

 

c Left interface variables 

          if (i .eq. 1) then 

c First order at the boundary 

            rl = r(i-1) 

            ul = u(i-1) 

            pl = p(i-1) 

            zl = z(i-1) 

 

            rr = r(i) 

            ur = u(i) 

            pr = p(i) 

            zr = z(i) 

 

          else if (2 .le. i .and. i .le. imax-1) then 

c Higher-order 

 

            if (ilim .eq. 0) then 

 

c Hossaini limiting strategy 

              dqwr = r(i-1) - r(i-2) 

              dqer = r(i)   - r(i-1) 

              dqir = r(i+1) - r(i) 

              phir = c14*(2d0*dqwr*dqer + eps) 

     &             /(dqwr*dqwr + dqer*dqer + eps) 

 

              dqwu = u(i-1) - u(i-2) 

              dqeu = u(i)   - u(i-1) 

              dqiu = u(i+1) - u(i) 

              phiu = c14*(2d0*dqwu*dqeu + eps) 

     &             /(dqwu*dqwu + dqeu*dqeu + eps) 

 

              dqwp = p(i-1) - p(i-2) 

              dqep = p(i)   - p(i-1) 

              dqip = p(i+1) - p(i) 

              phip = c14*(2d0*dqwp*dqep + eps) 

     &             /(dqwp*dqwp + dqep*dqep + eps) 

 

              dqwz = z(i-1) - z(i-2) 

              dqez = z(i)   - z(i-1) 

              dqiz = z(i+1) - z(i) 

              phiz = c14*(2d0*dqwz*dqez + eps) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

68 

     &             /(dqwz*dqwz + dqez*dqez + eps) 

 

c Density 

              rl   = r(i-1) + iext*phir*(epsm*dqwr + epsp*dqer) 

              rr   = r(i)   - iext*phir*(epsm*dqir + epsp*dqer) 

 

c Velocity 

              ul   = u(i-1) + iext*phiu*(epsm*dqwu + epsp*dqeu) 

              ur   = u(i)   - iext*phiu*(epsm*dqiu + epsp*dqeu) 

 

c Pressure 

              pl   = p(i-1) + iext*phip*(epsm*dqwp + epsp*dqep) 

              pr   = p(i)   - iext*phip*(epsm*dqip + epsp*dqep) 

 

c Rx Progress 

              zl   = z(i-1) + iext*phiz*(epsm*dqwz + epsp*dqez) 

              zr   = z(i)   - iext*phiz*(epsm*dqiz + epsp*dqez) 

 

            else if (ilim .eq. 1) then 

 

c Hirsch limiting strategy 

              dra  = r(i+1) - r(i) 

              drb  = r(i)   - r(i-1) 

              drc  = r(i-1) - r(i-2) 

              drd  = drb    - drc 

              dre  = dra    - drb 

 

              dua  = u(i+1) - u(i) 

              dub  = u(i)   - u(i-1) 

              duc  = u(i-1) - u(i-2) 

              dud  = dub    - duc 

              due  = dua    - dub 

 

              dpa  = p(i+1) - p(i) 

              dpb  = p(i)   - p(i-1) 

              dpc  = p(i-1) - p(i-2) 

              dpd  = dpb    - dpc 

              dpe  = dpa    - dpb 

 

              dza  = z(i+1) - z(i) 

              dzb  = z(i)   - z(i-1) 

              dzc  = z(i-1) - z(i-2) 

              dzd  = dzb    - dzc 

              dze  = dza    - dzb 

 

c Check monotonicity 

              imon = 1 

              if (dra*drb .lt. 0d0) imon = 0 

              if (drb*drc .lt. 0d0) imon = 0 

              if (dua*dub .lt. 0d0) imon = 0 

              if (dub*duc .lt. 0d0) imon = 0 

              if (dpa*dpb .lt. 0d0) imon = 0 

              if (dpb*dpc .lt. 0d0) imon = 0 

              if (dza*dzb .lt. 0d0) imon = 0 

              if (dzb*dzc .lt. 0d0) imon = 0 

 

              if (imon .eq. 0) then 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

69 

 

c First-order interface is non-monotonic 

                rl = r(i-1) 

                ul = u(i-1) 

                pl = p(i-1) 

                zl = z(i-1) 

 

                rr = r(i) 

                ur = u(i) 

                pr = p(i) 

                zr = z(i) 

 

              else 

 

c First-order interface is monotonic 

                denm = drb*drb + drc*drc + eps 

                phi  = (drb*drd + eps)/denm 

                vhi  = (drc*drd + eps)/denm 

                rl   = r(i-1) + iext*(epsm*phi*drc 

     &                              + epsp*vhi*drb) 

 

                denm = dra*dra + drb*drb + eps 

                phi  = (drb*dre + eps)/denm 

                vhi  = (dra*dre + eps)/denm 

                rr   = r(i)   - iext*(epsm*phi*dra 

     &                              + epsp*vhi*drb) 

 

                denm = dub*dub + duc*duc + eps 

                phi  = (dub*dud + eps)/denm 

                vhi  = (duc*dud + eps)/denm 

                ul   = u(i-1) + iext*(epsm*phi*duc 

     &                              + epsp*vhi*dub) 

 

                denm = dua*dua + dub*dub + eps 

                phi  = (dub*due + eps)/denm 

                vhi  = (dua*due + eps)/denm 

                ur   = u(i)   - iext*(epsm*phi*dua 

     &                              + epsp*vhi*dub) 

 

                denm = dpb*dpb + dpc*dpc + eps 

                phi  = (dpb*dpd + eps)/denm 

                vhi  = (dpc*dpd + eps)/denm 

                pl   = p(i-1) + iext*(epsm*phi*dpc 

     &                              + epsp*vhi*dpb) 

 

                denm = dpa*dpa + dpb*dpb + eps 

                phi  = (dpb*dpe + eps)/denm 

                vhi  = (dpa*dpe + eps)/denm 

                pr   = p(i)   - iext*(epsm*phi*dpa 

     &                              + epsp*vhi*dpb) 

 

                denm = dzb*dzb + dzc*dzc + eps 

                phi  = (dzb*dzd + eps)/denm 

                vhi  = (dzc*dzd + eps)/denm 

                zl   = z(i-1) + iext*(epsm*phi*dzc 

     &                              + epsp*vhi*dzb) 

 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

70 

                denm = dza*dza + dzb*dzb + eps 

                phi  = (dzb*dze + eps)/denm 

                vhi  = (dza*dze + eps)/denm 

                zr   = z(i)   - iext*(epsm*phi*dza 

     &                              + epsp*vhi*dzb) 

 

              endif 

 

 

            else 

              write(*,*) ' ' 

              write(*,*) ' Unknown limiting strategy' 

              write(*,*) ' ' 

            endif 

 

c Set ceiling on zl, zr 

            zl   = min(zl,1d0) 

            zr   = min(zr,1d0) 

 

          else 

 

c First order at imax 

            rl = r(i-1) 

            ul = u(i-1) 

            pl = p(i-1) 

            zl = z(i-1) 

 

            rr = r(i) 

            ur = u(i) 

            pr = p(i) 

            zr = z(i) 

               

          endif 

 

c         zzl(i) = zl 

c         zzr(i) = zr 

 

c Final monotonicity check 

          imon = 0 

          rat  = (r(i) - r(i-1))*(rr - rl) 

          if (rat .lt. 0d0) imon = 1 

          rat  = (u(i) - u(i-1))*(ur - ul) 

          if (rat .lt. 0d0) imon = 2 

          rat  = (p(i) - p(i-1))*(pr - pl) 

          if (rat .lt. 0d0) imon = 3 

          rat  = (z(i) - z(i-1))*(zr - zl) 

          if (rat .lt. 0d0) imon = 4 

 

c Set first order interface 

          if (imon .ne. 0) then 

            rl = r(i-1) 

            rr = r(i) 

            ul = u(i-1) 

            ur = u(i) 

            pl = p(i-1) 

            pr = p(i) 

            zl = z(i-1) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

71 

            zr = z(i) 

          endif 

             

c Calculate internal energy 

          if (ieos .eq. 0) then 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c CPG EOS 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

            el  = pl/gam1/rl - zl*qdet0 

            er  = pr/gam1/rr - zr*qdet0 

 

          else if (ieos .eq. 1) then 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c JWL EOS 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

            rht  = rl/r0 

            rhti = 1d0/rht 

            ri   = 1d0/rl 

            tmp  = pl - aj*(1d0 - wr1*rl)*dexp(-rh1*ri) 

     &                - bj*(1d0 - wr2*rl)*dexp(-rh2*ri) 

 

            el   = tmp*ri/wj - zl*qdet0 

 

            rht  = rr/r0 

            rhti = 1d0/rht 

            ri   = 1d0/rr 

            tmp  = pr - aj*(1d0 - wr1*rr)*dexp(-rh1*ri) 

     &                - bj*(1d0 - wr2*rr)*dexp(-rh2*ri) 

 

            er   = tmp*ri/wj - zr*qdet0 

 

          else if (ieos .eq. 2) then 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Hayes-I/JWL EOS 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Left of interface; set arguments 

            ra  = rl 

            za  = zl 

            rz  = ra*za 

            omz = 1d0 - za 

 

c Solid phase limit 

            if (za .le. ztol1) then 

 

              el = pl/gh + beta*r0/ra + t4*((ra/r0)**alfa) - t7 

 

c Mixed phases 

            else if (ztol1 .lt. za .and. za .lt. ztol2) then 

 

c Evaluate denominator function 

              bot   = omz/gh + 1d0/wj/ra 

              if (bot .lt. 1d-10) then 

                write(*,*) ' ' 

                write(*,*) ' Zero denonimator term.' 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

72 

                write(*,*) ' ' 

                stop 

              endif 

 

c Evaluate numerator functions 

              top(2)  = omz - r0/ra 

              top(3)  = (omz**nh)*((ra/r0)**alfa) 

              top(4)  = omz 

              top(5)  = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz) 

              top(6)  = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz) 

              top(7)  = za 

 

              el = bot*pl 

              do nn = 2,7 

                el = el - c(nn)*top(nn) 

              enddo 

 

c Gas phase limit 

            else 

 

              el = pl/wj/ra  

     &           - aj*(1d0/wj/ra - 1d0/rh1)*dexp(-rh1/ra) 

     &           - bj*(1d0/wj/ra - 1d0/rh2)*dexp(-rh2/ra)  

     &           - qdet0 - e0 

 

            endif 

 

c Right of interface; set arguments 

            ra  = rr 

            za  = zr 

            rz  = ra*za 

            omz = 1d0 - za 

 

c Solid phase limit 

            if (za .le. ztol1) then 

 

              er = pr/gh + beta*r0/ra + t4*((ra/r0)**alfa) - t7 

 

c Mixed phases 

            else if (ztol1 .lt. za .and. za .lt. ztol2) then 

 

c Evaluate denominator function 

              bot   = omz/gh + 1d0/wj/ra 

              if (bot .lt. 1d-10) then 

                write(*,*) ' ' 

                write(*,*) ' Zero denonimator term.' 

                write(*,*) ' ' 

                stop 

              endif 

 

c Evaluate numerator functions 

              top(2)  = omz - r0/ra 

              top(3)  = (omz**nh)*((ra/r0)**alfa) 

              top(4)  = omz 

              top(5)  = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz) 

              top(6)  = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz) 

              top(7)  = za 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

73 

 

c Compute internal energy 

              er = bot*pr 

              do nn = 2,7 

                er = er - c(nn)*top(nn) 

              enddo 

 

c Gas phase limit 

            else 

 

              er = pr/wj/ra  

     &           - aj*(1d0/wj/ra - 1d0/rh1)*dexp(-rh1/ra) 

     &           - bj*(1d0/wj/ra - 1d0/rh2)*dexp(-rh2/ra)  

     &           - qdet0 - e0 

 

            endif 

 

          else if (ieos .eq. 3) then 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Hayes-II/JWL EOS 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Left of interface; set arguments 

            ra  = rl 

            za  = zl 

            rz  = ra*za 

            omz = 1d0 - za 

 

c Solid phase limit 

            if (za .le. ztol1) then 

 

              el = pl/gh + beta*r0/ra + t4*((ra/r0)**alfa) - t7 

     &           - h1/gh/nh*(((ra/r0)**nh) - 1d0) 

 

c Mixed phases 

            else if (ztol1 .lt. za .and. za .lt. ztol2) then 

 

c Evaluate denominator function 

              bot   = omz/gh + 1d0/wj/ra 

              if (bot .lt. 1d-10) then 

                write(*,*) ' ' 

                write(*,*) ' Zero denonimator term.' 

                write(*,*) ' ' 

                stop 

              endif 

 

c Evaluate numerator functions 

              top(2)  = omz - r0/ra 

              top(3)  = (omz**nh)*((ra/r0)**alfa) 

              top(4)  = omz 

              top(5)  = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz) 

              top(6)  = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz) 

              top(7)  = za 

              top(8)  = (omz**nhp1)*((ra/r0)**nh) + za - 1d0 

 

              el = bot*pl 

              do nn = 2,8 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

74 

                el = el - c(nn)*top(nn) 

              enddo 

 

c Gas phase limit 

            else 

 

              el = pl/wj/ra  

     &           - aj*(1d0/wj/ra - 1d0/rh1)*dexp(-rh1/ra) 

     &           - bj*(1d0/wj/ra - 1d0/rh2)*dexp(-rh2/ra)  

     &           - qdet0 - e0 

 

            endif 

 

c Right of interface; set arguments 

            ra  = rr 

            za  = zr 

            rz  = ra*za 

            omz = 1d0 - za 

 

c Solid phase limit 

            if (za .le. ztol1) then 

 

              er = pr/gh + beta*r0/ra + t4*((ra/r0)**alfa) - t7 

     &           - h1/gh/nh*(((ra/r0)**nh) - 1d0) 

  

c Mixed phases 

            else if (ztol1 .lt. za .and. za .lt. ztol2) then 

 

c Evaluate denominator function 

              bot   = omz/gh + 1d0/wj/ra 

              if (bot .lt. 1d-10) then 

                write(*,*) ' ' 

                write(*,*) ' Zero denonimator term.' 

                write(*,*) ' ' 

                stop 

              endif 

 

c Evaluate numerator functions 

              top(2)  = omz - r0/ra 

              top(3)  = (omz**nh)*((ra/r0)**alfa) 

              top(4)  = omz 

              top(5)  = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz) 

              top(6)  = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz) 

              top(7)  = za 

              top(8)  = (omz**nhp1)*((ra/r0)**nh) + za - 1d0 

 

c Compute internal energy 

              er = bot*pr 

              do nn = 2,8 

                er = er - c(nn)*top(nn) 

              enddo 

 

c Gas phase limit 

            else 

 

              er = pr/wj/ra  

     &           - aj*(1d0/wj/ra - 1d0/rh1)*dexp(-rh1/ra) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

75 

     &           - bj*(1d0/wj/ra - 1d0/rh2)*dexp(-rh2/ra)  

     &           - qdet0 - e0 

 

            endif 

 

          else 

            write(*,*) ' ' 

            write(*,*) ' Unknown EOS' 

            write(*,*) ' ' 

            stop 

          endif 

 

c Total energy/mass 

          eel = el + 0.5d0*ul*ul 

          hhl = eel + pl/rl 

 

          eer = er + 0.5d0*ur*ur 

          hhr = eer + pr/rr 

 

c         if (imon .ne. 0) then 

c           write(*,*) ' ' 

c           write(*,*) ' Monotonicity violation - ',imon 

c           write(*,*) ' i = ',i 

c           write(*,*) ' ' 

c           write(*,*) ' r(i-1) = ',r(i-1) 

c           write(*,*) ' rl     = ',rl 

c           write(*,*) ' rr     = ',rr 

c           write(*,*) ' r(i)   = ',r(i) 

c           write(*,*) ' ' 

c           write(*,*) ' u(i-1) = ',u(i-1) 

c           write(*,*) ' ul     = ',ul 

c           write(*,*) ' ur     = ',ur 

c           write(*,*) ' u(i)   = ',u(i) 

c           write(*,*) ' ' 

c           write(*,*) ' p(i-1) = ',p(i-1) 

c           write(*,*) ' pl     = ',pl 

c           write(*,*) ' pr     = ',pr 

c           write(*,*) ' p(i)   = ',p(i) 

c           write(*,*) ' ' 

c           pause 

c         endif 

 

c80   format(2x,d12.6,2x,d12.6,2x,d12.6) 

c         if (n .eq. 177) then 

c           write(25,80) r(i-1),rr,r(i) 

c         endif 

 

c Roe averages 

          if (iav .eq. 1) then 

            sqrl  = dsqrt(rl) 

            sqrr  = dsqrt(rr) 

            rsumi = 1d0/(sqrl + sqrr) 

 

            rav   = sqrl*sqrr 

            uav   = (sqrl*ul + sqrr*ur)*rsumi 

            zav   = (sqrl*zl + sqrr*zr)*rsumi 

            zav   = min(zav,1d0) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

76 

            eav   = (sqrl*el + sqrr*er)*rsumi 

            hav   = (sqrl*hhl + sqrr*hhr)*rsumi 

          else 

       

c Test arithmetic averages 

            rav   = 0.5d0*(rl + rr) 

            uav   = 0.5d0*(ul + ur) 

            zav   = 0.5d0*(zl + zr) 

            eav   = 0.5d0*(el + er) 

            hav   = 0.5d0*(hhl + hhr) 

          endif 

 

          pav   = rav*(hav - eav - 0.5d0*uav*uav) 

         

c Calculate averaged pressure derivatives 

          if (ieos .eq. 0) then 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c CPG EOS 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

            dpdr  = gam1*eav + gam1*zav*qdet0 

            dpde  = gam1*rav 

            dpdz  = gam1*rav*qdet0 

 

          else if (ieos .eq. 1) then 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c JWL EOS 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

            ri  = 1d0/rav 

            tmp = aj*(rh1*ri*ri - wj*ri - wj/rh1)*dexp(-rh1*ri) 

            tmp = tmp + bj*(rh2*ri*ri - wj*ri - wj/rh2)*dexp(-rh2*ri) 

             

            dpdr = tmp + wj*eav + wj*zav*qdet0  

            dpde = wj*rav 

            dpdz = wj*rav*qdet0 

 

          else if (ieos .eq. 2) then 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Hayes-I/JWL EOS 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

            ra    = rav 

            ra2   = ra*ra 

            ea    = eav 

            za    = zav 

            rz    = ra*za 

            omz   = 1d0 - za 

 

c Solid phase limit 

            if (za .le. ztol1) then 

 

              dpdr = beta*r0*gh/ra2 - alfa*gh*t4*(ra**(alfa-1d0)) 

     &             / r0**alfa 

 

              dpdz = gh*ea - beta*r0*gh/ra + alfa*gh*t4 

     &             * ((ra/r0)**alfa) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

77 

 

              dpde = gh 

 

c Mixed phases 

            else if (ztol1 .lt. za .and. za .lt. ztol2) then 

 

c Evaluate denominator functions 

              bot   = omz/gh + 1d0/wj/ra 

              if (bot .lt. 1d-10) then 

                write(*,*) ' ' 

                write(*,*) ' Zero denonimator term.' 

                write(*,*) ' ' 

                stop 

              endif 

              bot2  = bot*bot 

              botr  = -1d0/wj/ra2 

              botz  = -1d0/gh 

 

c Evaluate numerator functions 

              top(1)  = ea 

              top(2)  = omz - r0/ra 

              top(3)  = (omz**nh)*((ra/r0)**alfa) 

              top(4)  = omz 

              top(5)  = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz) 

              top(6)  = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz) 

              top(7)  = za 

 

c Compute derivatives for numerator functions 

              topr(1)  = 0d0 

              topr(2)  = r0/ra2 

              topr(3)  = alfa/r0*(omz**nh)*((ra/r0)**(alfa-1d0)) 

              topr(4)  = 0d0 

              topr(5)  = (rh1/wj/rz - 1d0/wj - 1d0)*dexp(-rh1/rz)/ra2 

              topr(6)  = (rh2/wj/rz - 1d0/wj - 1d0)*dexp(-rh2/rz)/ra2 

              topr(7)  = 0d0 

 

              topz(1)  =  0d0 

              topz(2)  = -1d0 

              topz(3)  = -nh*((omz*ra/r0)**alfa) 

              topz(4)  = -1d0 

              topz(5)  = (rh1/wj/rz/rz - 1d0/rz - 1d0/rh1)*dexp(-

rh1/rz) 

              topz(6)  = (rh2/wj/rz/rz - 1d0/rz - 1d0/rh2)*dexp(-

rh2/rz) 

              topz(7)  =  1d0 

 

c Compute density and internal energy derivatives of pressure 

              dpdr = 0d0 

              dpdz = 0d0 

              do nn = 1,7 

                dpdr = dpdr + c(nn)*(bot*topr(nn) - botr*top(nn)) 

                dpdz = dpdz + c(nn)*(bot*topz(nn) - botz*top(nn)) 

              enddo 

              dpdr = dpdr/bot2 

              dpdz = dpdz/bot2 

              dpde = 1d0/bot 

 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

78 

c Gas phase limit 

            else 

 

              dpdr = wj*ei(i)  

     &             + aj*(rh1/ra2 - wj/ra - wj/rh1)*dexp(-rh1/ra) 

     &             + bj*(rh2/ra2 - wj/ra - wj/rh2)*dexp(-rh2/ra) 

     &             + wj*(qdet0 + e0) 

 

              dpdz = aj*(rh1/ra - wj - wj*ra/rh1)*dexp(-rh1/ra) 

     &             + bj*(rh2/ra - wj - wj*ra/rh2)*dexp(-rh2/ra) 

     &             + ra*wj*(qdet0 + e0) 

 

              dpde = wj*ra 

 

            endif 

 

          else if (ieos .eq. 3) then 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Hayes-II/JWL EOS 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

            ra    = rav 

            ra2   = ra*ra 

            ea    = eav 

            za    = zav 

            rz    = ra*za 

            omz   = 1d0 - za 

 

c Solid phase limit 

            if (za .le. ztol1) then 

 

              dpdr = beta*r0*gh/ra2 - alfa*gh*t4*(ra**(alfa-1d0)) 

     &             / r0**alfa 

     &             + h1/r0*((ra/r0)**nhm1) 

 

              dpdz = gh*ea - beta*r0*gh/ra + alfa*gh*t4 

     &             * ((ra/r0)**alfa) 

     &             + h1/nh*(1d0 - nhp1*((ra/r0)**nh)) 

 

              dpde = gh 

 

c Mixed phases 

            else if (ztol1 .lt. za .and. za .lt. ztol2) then 

 

c Evaluate denominator functions 

              bot   = omz/gh + 1d0/wj/ra 

              if (bot .lt. 1d-10) then 

                write(*,*) ' ' 

                write(*,*) ' Zero denonimator term.' 

                write(*,*) ' ' 

                stop 

              endif 

              bot2  = bot*bot 

              botr  = -1d0/wj/ra2 

              botz  = -1d0/gh 

 

c Evaluate numerator functions 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

79 

              top(1)  = ea 

              top(2)  = omz - r0/ra 

              top(3)  = (omz**nh)*((ra/r0)**alfa) 

              top(4)  = omz 

              top(5)  = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz) 

              top(6)  = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz) 

              top(7)  = za 

              top(8)  = (omz**nhp1)*((ra/r0)**nh) + za - 1d0 

 

c Compute derivatives for numerator functions 

              topr(1)  = 0d0 

              topr(2)  = r0/ra2 

              topr(3)  = alfa/r0*(omz**nh)*((ra/r0)**(alfa-1d0)) 

              topr(4)  = 0d0 

              topr(5)  = (rh1/wj/rz - 1d0/wj - 1d0)*dexp(-rh1/rz)/ra2 

              topr(6)  = (rh2/wj/rz - 1d0/wj - 1d0)*dexp(-rh2/rz)/ra2 

              topr(7)  = 0d0 

              topr(8)  = nh/r0*(omz**nhp1)*((ra/r0)*nhm1) 

 

              topz(1)  =  0d0 

              topz(2)  = -1d0 

              topz(3)  = -nh*((omz*ra/r0)**alfa) 

              topz(4)  = -1d0 

              topz(5)  = (rh1/wj/rz/rz - 1d0/rz - 1d0/rh1)*dexp(-

rh1/rz) 

              topz(6)  = (rh2/wj/rz/rz - 1d0/rz - 1d0/rh2)*dexp(-

rh2/rz) 

              topz(7)  =  1d0 

              topz(8)  = 1d0 - nhp1*((ra/r0*omz)**nh) 

 

c Compute density and internal energy derivatives of pressure 

              dpdr = 0d0 

              dpdz = 0d0 

              do nn = 1,8 

                dpdr = dpdr + c(nn)*(bot*topr(nn) - botr*top(nn)) 

                dpdz = dpdz + c(nn)*(bot*topz(nn) - botz*top(nn)) 

              enddo 

              dpdr = dpdr/bot2 

              dpdz = dpdz/bot2 

              dpde = 1d0/bot 

 

c Gas phase limit 

            else 

 

              dpdr = wj*ei(i)  

     &             + aj*(rh1/ra2 - wj/ra - wj/rh1)*dexp(-rh1/ra) 

     &             + bj*(rh2/ra2 - wj/ra - wj/rh2)*dexp(-rh2/ra) 

     &             + wj*(qdet0 + e0) 

 

              dpdz = aj*(rh1/ra - wj - wj*ra/rh1)*dexp(-rh1/ra) 

     &             + bj*(rh2/ra - wj - wj*ra/rh2)*dexp(-rh2/ra) 

     &             + ra*wj*(qdet0 + e0) 

 

              dpde = wj*ra 

 

            endif 

 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

80 

          else 

            write(*,*) ' ' 

            write(*,*) ' Unknown EOS' 

            write(*,*) ' ' 

            stop 

          endif 

 

c Calculate averaged speed of sound 

          if (dpdr .lt. 0d0) dpdr = dabs(dpdr) 

          a2  = dpdr + pav*dpde/rav/rav 

 

          if (a2 .lt. 0d0) then 

            write(*,*) ' a2 < 0 !' 

            write(*,*) ' i = ',i 

            write(*,*) ' eav  = ',eav 

            write(*,*) ' el   = ',el 

            write(*,*) ' er   = ',er 

            write(*,*) ' rav  = ',rav 

            write(*,*) ' pav  = ',pav 

            write(*,*) ' pl   = ',pl 

            write(*,*) ' pr   = ',pr 

            write(*,*) ' zav  = ',zav 

            write(*,*) ' dpdr = ',dpdr 

            write(*,*) ' dpde = ',dpde 

            write(*,*) ' ' 

            write(*,*) ' r+1 = ',rp(i) 

            write(*,*) ' u+1 = ',up(i) 

            write(*,*) ' p+1 = ',pp(i) 

            write(*,*) ' z+1 = ',zp(i) 

            write(*,*) ' ' 

            write(*,*) ' r-1 = ',rp(i-1) 

            write(*,*) ' u-1 = ',up(i-1) 

            write(*,*) ' p-1 = ',pp(i-1) 

            write(*,*) ' z-1 = ',zp(i-1) 

            write(*,*) ' ' 

            stop 

          endif 

 

          aav = dsqrt(a2) 

 

          if (idbgf .eq. 1) then 

          write(*,*) ' rav = ',rav 

          write(*,*) ' uav = ',uav 

          write(*,*) ' zav = ',zav 

          write(*,*) ' eav = ',eav 

          write(*,*) ' hav = ',hav 

          write(*,*) ' pav = ',pav 

          write(*,*) ' aav = ',aav 

          write(*,*) ' ' 

          endif 

 

c Eigenvalues 

          aeg(1) = dabs(uav - aav) 

          aeg(2) = dabs(uav) 

          aeg(3) = dabs(uav) 

          aeg(4) = dabs(uav + aav) 

 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

81 

          if (idbgf .eq. 1) then 

          write(*,*) ' aeg1 = ',aeg(1) 

          write(*,*) ' aeg2 = ',aeg(2) 

          write(*,*) ' aeg3 = ',aeg(3) 

          write(*,*) ' aeg4 = ',aeg(4) 

          write(*,*) ' ' 

          pause 

          endif 

 

c Right eigenvectors 

          evr(1,1) = 1d0 

          evr(1,2) = 1d0 

          evr(1,3) = 1d0 

          evr(1,4) = 1d0 

 

          evr(2,1) = uav - aav 

          evr(2,2) = uav 

          evr(2,3) = uav 

          evr(2,4) = uav + aav 

 

          evr(3,1) = hav - uav*aav 

          evr(3,2) = hav - rav*a2/dpde + zav*dpdz/dpde 

          evr(3,3) = hav - rav*a2/dpde + (zav - 1d0)*dpdz/dpde 

          evr(3,4) = hav + uav*aav 

 

          evr(4,1) = zav 

          evr(4,2) = 0d0 

          evr(4,3) = 1d0 

          evr(4,4) = zav 

 

          if (idbgf .eq. 1) then 

          write(*,*) 'EVR:' 

          write(*,71) evr(1,1),evr(1,2),evr(1,3),evr(1,4) 

          write(*,71) evr(2,1),evr(2,2),evr(2,3),evr(2,4) 

          write(*,71) evr(3,1),evr(3,2),evr(3,3),evr(3,4) 

          write(*,71) evr(4,1),evr(4,2),evr(4,3),evr(4,4) 

          write(*,*) ' ' 

          endif 

 

c |R| 

          detr = -2d0*rav*a2*aav/dpde 

 

c Compute primitive variables differences 

          delr = rr - rl 

          delv = ur - ul 

          delp = pr - pl 

          delz = zr - zl 

 

c Compute characteristic wave magnitudes 

          omz    = 1d0 - zav 

          cwm(1) = c12*(delp/aav/aav - rav*delv/aav) 

          cwm(2) = omz*(delr - delp/aav/aav) - rav*delz 

          cwm(3) = zav*(delr - delp/aav/aav) + rav*delz 

          cwm(4) = c12*(delp/aav/aav + rav*delv/aav) 

 

c Compute R |eg| L dq 

          do l = 1,4 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

82 

            vn(l) = 0d0 

            do m = 1,4 

              vn(l) = vn(l) + aeg(m)*cwm(m)*evr(l,m) 

            enddo 

          enddo 

 

          if (idbgf .eq. 1) then 

          write(*,*) ' vn1 = ',vn(1) 

          write(*,*) ' vn2 = ',vn(2) 

          write(*,*) ' vn3 = ',vn(3) 

          write(*,*) ' vn4 = ',vn(4) 

          write(*,*) ' ' 

          endif 

 

c Compute the Euler flux 

          fl(1) = rl*ul 

          fl(2) = rl*ul*ul + pl 

          fl(3) = rl*ul*hhl 

          fl(4) = rl*ul*zl 

 

          fr(1) = rr*ur 

          fr(2) = rr*ur*ur + pr 

          fr(3) = rr*ur*hhr 

          fr(4) = rr*ur*zr 

 

c Compute numerical flux 

          do l = 1,4 

            fn(i,l) = 0.5d0*(fl(l) + fr(l) - vn(l)) 

          enddo 

 

          if (idbgf .eq. 1) then 

          write(*,*) ' FL:' 

          write(*,*) ' fl1 = ',fl(1) 

          write(*,*) ' fl2 = ',fl(2) 

          write(*,*) ' fl3 = ',fl(3) 

          write(*,*) ' fl4 = ',fl(4) 

          write(*,*) ' ' 

          write(*,*) ' FR:' 

          write(*,*) ' fr1 = ',fr(1) 

          write(*,*) ' fr2 = ',fr(2) 

          write(*,*) ' fr3 = ',fr(3) 

          write(*,*) ' fr4 = ',fr(4) 

          write(*,*) ' ' 

          write(*,*) ' FN:' 

          write(*,*) ' fn1 = ',fn(i,1) 

          write(*,*) ' fn2 = ',fn(i,2) 

          write(*,*) ' fn3 = ',fn(i,3) 

          write(*,*) ' fn4 = ',fn(i,4) 

          write(*,*) ' ' 

          pause 

          endif 

        enddo 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c End of flux calculation loop 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

83 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Advance the solution in time 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

 

        do i = 1,imax-1 

          do l = 1,4 

            dqv(l) = dt/dx*(fn(i+1,l) - fn(i,l)) 

          enddo 

 

          do l = 1,4 

            qvp(i,l) = qv(i,l) - dqv(l) + dt*s(i,l) 

          enddo 

        enddo 

 

c Extract primitive variables 

        do i = 1,imax-1 

          rp(i)  = qvp(i,1) 

          up(i)  = qvp(i,2)/qvp(i,1) 

          etp(i) = qvp(i,3)/qvp(i,1) 

          zp(i)  = qvp(i,4)/qvp(i,1) 

          zp(i)  = min(zp(i),1d0) 

          zp(i)  = max(zp(i),0d0) 

 

          if (zp(i) .lt. 1d-99)  zp(i) = 0d0 

          if (zp(i) .ge. 0.99d0) zp(i) = 1d0 

 

          eip(i) = etp(i) - 0.5d0*up(i)*up(i) 

 

          tk(i)  = tk0 

 

          if (rp(i) .le. 0d0) then 

            write(*,*) ' ' 

            write(*,*) ' Negative/Zero density' 

            write(*,*) ' i = ',i 

            write(*,*) ' r = ',rp(i) 

            write(*,*) ' u = ',up(i) 

            write(*,*) ' e = ',etp(i) 

            write(*,*) ' z = ',zp(i) 

            write(*,*) ' ' 

            write(*,*) ' Program STOP' 

            write(*,*) ' ' 

            stop 

          endif 

 

c If internal energy is negative, apply a fix 

          if (eip(i) .le. 0d0) then 

 

c           write(*,*) ' ' 

c           write(*,*) ' Negative/Zero internal energy' 

c           write(*,*) ' i    = ',i 

c           write(*,*) ' r    = ',rp(i) 

c           write(*,*) ' u    = ',up(i) 

c           write(*,*) ' E    = ',etp(i) 

c           write(*,*) ' e    = ',eip(i) 

c           write(*,*) ' z    = ',zp(i) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

84 

c           write(*,*) ' ' 

c           write(*,*) ' iefx = ',iefx 

 

            if (iefx .eq. 0) then 

c Absolute value |e| fix 

              eip(i) = dabs(eip(i)) 

 

            else if (iefx .eq. 1) then 

c Pressure estimation fix 

c Estimate pressure using JWL EOS 

              pest   = aj*dexp(-rh1/rp(i)) + bj*dexp(-rh2/rp(i)) 

     &               + cjh*(rp(i)**(1d0 + wj)) 

 

c Compute detonation e based on JWL pressure 

              eip(i) = 1d0/wj/rp(i)* 

     &               ( cjh*(rp(i)**(1d0 + wj)) 

     &               + aj*wj*rp(i)/rh1*dexp(-rh1/rp(i)) 

     &               + bj*wj*rp(i)/rh2*dexp(-rh2/rp(i)) ) 

 

c             write(*,*) ' ' 

c             write(*,*) ' pest = ',pest 

c             write(*,*) ' eest = ',eip(i) 

c             pause 

 

            else if (iefx .eq. 2) then 

c Time-lagged velocity fix 

              eip(i) = etp(i) - 0.5d0*u(i)*u(i) 

 

            else if (iefx .eq. 3) then 

c Zero kinetic energy fix 

              eip(i) = etp(i) 

 

            else 

              write(*,*) ' ' 

              write(*,*) ' Unknown iefx value.' 

              write(*,*) ' ' 

              stop 

            endif 

 

c           pause 

          endif 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Calculate pressure and its derivatives 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

          if (ieos .eq. 0) then 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c CPG EOS 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

            pp(i)  = gam1*rp(i)*eip(i) + gam1*rp(i)*zp(i)*qdet0  

 

            dpdr   = gam1*eip(i) + gam1*zp(i)*qdet0 

            dpde   = gam1*rp(i) 

            dpdz   = gam1*rp(i)*qdet0 

 

          else if (ieos .eq. 1) then 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

85 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c JWL EOS 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

            rht  = rp(i)/r0 

            rhti = 1d0/rht 

            ri   = 1d0/rp(i) 

            tmp  = aj*(1d0 - wr1*rp(i))*dexp(-rh1*ri) 

            tmp  = tmp + bj*(1d0 - wr2*rp(i))*dexp(-rh2*ri) 

             

            pp(i) = tmp + wj*rp(i)*eip(i) + wj*rp(i)*zp(i)*qdet0 

 

            tmp  = aj*(rh1*ri*ri - wj*ri - wj/rh1)*dexp(-rh1*ri) 

            tmp  = tmp + bj*(rh2*ri*ri - wj*ri - wj/rh2)*dexp(-rh2*ri) 

             

            dpdr = tmp + wj*eip(i) + wj*zp(i)*qdet0 

            dpde = wj*rp(i) 

            dpdz = wj*rp(i)*qdet0 

 

          else if (ieos .eq. 2) then 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Hayes-I/JWL EOS 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

            ra    = rp(i) 

            ra2   = ra*ra 

            ea    = eip(i) 

            za    = zp(i) 

            rz    = ra*za 

            omz   = 1d0 - za 

 

c Solid phase limit 

            if (za .le. ztol1) then 

 

c Compute pressure and its derivatives 

              pp(i) = gh*(ea - beta*r0/ra - t4*((ra/r0)**alfa) 

     &              + t7) 

 

              dpdr = beta*r0*gh/ra2 - alfa*gh*t4*(ra**(alfa-1d0)) 

     &             /(r0**alfa) 

 

              dpdz = gh*ea - beta*r0*gh/ra + alfa*gh*t4 

     &             * ((ra/r0)**alfa) 

 

              dpde = gh 

 

c Mixed phases 

            else if (ztol1 .lt. za .and. za .lt. ztol2) then 

 

c Evaluate denominator functions 

              bot   = omz/gh + 1d0/wj/ra 

              if (bot .lt. 1d-10) then 

                write(*,*) ' ' 

                write(*,*) ' Zero denonimator term.' 

                write(*,*) ' ' 

                stop 

              endif 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

86 

              bot2  = bot*bot 

              botr  = -1d0/wj/ra2 

              botz  = -1d0/gh 

 

c Evaluate numerator functions 

              top(1)  = ea 

              top(2)  = omz - r0/ra 

              top(3)  = (omz**nh)*((ra/r0)**alfa) 

              top(4)  = omz 

              top(5)  = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz) 

              top(6)  = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz) 

              top(7)  = za 

 

c Compute derivatives for numerator functions 

              topr(1)  = 0d0 

              topr(2)  = r0/ra2 

              topr(3)  = alfa/r0*(omz**nh)*((ra/r0)**(alfa-1d0)) 

              topr(4)  = 0d0 

              topr(5)  = (rh1/wj/rz - 1d0/wj - 1d0)*dexp(-rh1/rz)/ra2 

              topr(6)  = (rh2/wj/rz - 1d0/wj - 1d0)*dexp(-rh2/rz)/ra2 

              topr(7)  = 0d0 

 

              topz(1)  =  0d0 

              topz(2)  = -1d0 

              topz(3)  = -nh*((omz*ra/r0)**alfa) 

              topz(4)  = -1d0 

              topz(5)  = (rh1/wj/rz/rz - 1d0/rz - 1d0/rh1)*dexp(-

rh1/rz) 

              topz(6)  = (rh2/wj/rz/rz - 1d0/rz - 1d0/rh2)*dexp(-

rh2/rz) 

              topz(7)  =  1d0 

 

c Compute pressure and its derivatives 

              pp(i) = 0d0 

              dpdr  = 0d0 

              dpdz  = 0d0 

              do nn = 1,7 

                pp(i) = pp(i) + c(nn)*top(nn) 

                dpdr  = dpdr + c(nn)*(bot*topr(nn) - botr*top(nn)) 

                dpdz  = dpdz + c(nn)*(bot*topz(nn) - botz*top(nn)) 

              enddo 

              pp(i) = pp(i)/bot 

              dpdr  = dpdr/bot2 

              dpdz  = dpdz/bot2 

              dpde  = 1d0/bot 

 

c Gas phase limit 

            else 

 

c Compute pressure and its derivatives 

              pp(i) = wj*ra*ea  

     &              + aj*(1d0 - wj*ra/rh1)*dexp(-rh1/ra) 

     &              + bj*(1d0 - wj*ra/rh2)*dexp(-rh2/ra) 

     &              + wj*ra*(qdet0 + e0) 

 

              dpdr = wj*ea  

     &             + aj*(rh1/ra2 - wj/ra - wj/rh1)*dexp(-rh1/ra) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

87 

     &             + bj*(rh2/ra2 - wj/ra - wj/rh2)*dexp(-rh2/ra) 

     &             + wj*(qdet0 + e0) 

 

              dpdz = aj*(rh1/ra - wj - wj*ra/rh1)*dexp(-rh1/ra) 

     &             + bj*(rh2/ra - wj - wj*ra/rh2)*dexp(-rh2/ra) 

     &             + ra*wj*(qdet0 + e0) 

 

              dpde = wj*ra 

 

            endif 

 

          else if (ieos .eq. 3) then 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Hayes-II/JWL EOS 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

            ra    = rp(i) 

            ra2   = ra*ra 

            ea    = eip(i) 

            za    = zp(i) 

            rz    = ra*za 

            omz   = 1d0 - za 

 

c Solid phase limit 

            if (za .le. ztol1) then 

 

c Compute pressure and its derivatives 

              pp(i) = gh*(ea - beta*r0/ra - t4*((ra/r0)**alfa) 

     &              + t7) 

     &              + h1/nh*(((ra/r0)**nh) - 1d0) 

 

              dpdr  = beta*r0*gh/ra2 - alfa*gh*t4*(ra**(alfa-1d0)) 

     &              /(r0**alfa) 

     &              + h1/r0*((ra/r0)**nhm1) 

 

              dpdz  = gh*ea - beta*r0*gh/ra + alfa*gh*t4 

     &              * ((ra/r0)**alfa) 

     &              + h1/nh*(1d0 - nhp1*((ra/r0)**nh))  

 

              dpde  = gh 

 

c Mixed phases 

            else if (ztol1 .lt. za .and. za .lt. ztol2) then 

 

c Evaluate denominator functions 

              bot   = omz/gh + 1d0/wj/ra 

              if (bot .lt. 1d-10) then 

                write(*,*) ' ' 

                write(*,*) ' Zero denonimator term.' 

                write(*,*) ' ' 

                stop 

              endif 

              bot2  = bot*bot 

              botr  = -1d0/wj/ra2 

              botz  = -1d0/gh 

 

c Evaluate numerator functions 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

88 

              top(1)  = ea 

              top(2)  = omz - r0/ra 

              top(3)  = (omz**nh)*((ra/r0)**alfa) 

              top(4)  = omz 

              top(5)  = (1d0/wj/ra - za/rh1)*dexp(-rh1/rz) 

              top(6)  = (1d0/wj/ra - za/rh2)*dexp(-rh2/rz) 

              top(7)  = za 

              top(8)  = (omz**nhp1)*((ra/r0)**nh) + za - 1d0 

 

c Compute derivatives for numerator functions 

              topr(1)  = 0d0 

              topr(2)  = r0/ra2 

              topr(3)  = alfa/r0*(omz**nh)*((ra/r0)**(alfa-1d0)) 

              topr(4)  = 0d0 

              topr(5)  = (rh1/wj/rz - 1d0/wj - 1d0)*dexp(-rh1/rz)/ra2 

              topr(6)  = (rh2/wj/rz - 1d0/wj - 1d0)*dexp(-rh2/rz)/ra2 

              topr(7)  = 0d0 

              topr(8)  = nh/r0*(omz**nhp1)*((ra/r0)**nhm1) 

 

              topz(1)  =  0d0 

              topz(2)  = -1d0 

              topz(3)  = -nh*((omz*ra/r0)**alfa) 

              topz(4)  = -1d0 

              topz(5)  = (rh1/wj/rz/rz - 1d0/rz - 1d0/rh1)*dexp(-

rh1/rz) 

              topz(6)  = (rh2/wj/rz/rz - 1d0/rz - 1d0/rh2)*dexp(-

rh2/rz) 

              topz(7)  =  1d0 

              topz(8)  =  1d0 - nhp1*((ra/r0*omz)**nh) 

 

c Compute pressure and its derivatives 

              pp(i) = 0d0 

              dpdr  = 0d0 

              dpdz  = 0d0 

              do nn = 1,8 

                pp(i) = pp(i) + c(nn)*top(nn) 

                dpdr  = dpdr + c(nn)*(bot*topr(nn) - botr*top(nn)) 

                dpdz  = dpdz + c(nn)*(bot*topz(nn) - botz*top(nn)) 

              enddo 

              pp(i) = pp(i)/bot 

              dpdr  = dpdr/bot2 

              dpdz  = dpdz/bot2 

              dpde  = 1d0/bot 

 

c Gas phase limit 

            else 

 

c Compute pressure and its derivatives 

              pp(i) = wj*ra*ea  

     &              + aj*(1d0 - wj*ra/rh1)*dexp(-rh1/ra) 

     &              + bj*(1d0 - wj*ra/rh2)*dexp(-rh2/ra) 

     &              + wj*ra*(qdet0 + e0) 

 

              dpdr = wj*ea  

     &             + aj*(rh1/ra2 - wj/ra - wj/rh1)*dexp(-rh1/ra) 

     &             + bj*(rh2/ra2 - wj/ra - wj/rh2)*dexp(-rh2/ra) 

     &             + wj*(qdet0 + e0) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

89 

 

              dpdz = aj*(rh1/ra - wj - wj*ra/rh1)*dexp(-rh1/ra) 

     &             + bj*(rh2/ra - wj - wj*ra/rh2)*dexp(-rh2/ra) 

     &             + ra*wj*(qdet0 + e0) 

 

              dpde = wj*ra 

 

            endif 

 

          else 

            write(*,*) ' ' 

            write(*,*) ' Unknown EOS' 

            write(*,*) ' ' 

            stop 

          endif 

 

c Check for negative pressure 

          if (pp(i) .lt. 0d0) then 

            write(*,*) ' ' 

            write(*,*) ' Negative pressure detected.' 

            write(*,*) ' i = ',i 

            write(*,*) ' r = ',rp(i) 

            write(*,*) ' u = ',up(i) 

            write(*,*) ' p = ',pp(i) 

            write(*,*) ' z = ',zp(i) 

            write(*,*) ' ea= ',ea 

            write(*,*) ' ' 

            write(*,*) ' r-1 = ',rp(i-1) 

            write(*,*) ' u-1 = ',up(i-1) 

            write(*,*) ' p-1 = ',pp(i-1) 

            write(*,*) ' z-1 = ',zp(i-1) 

            write(*,*) ' ' 

            write(*,*) ' Program STOP' 

            write(*,*) ' ' 

            stop 

          endif 

 

c Calculate the speed of sound 

          derv(i,1) = dpdr 

          derv(i,2) = dpde 

 

          if (dpdr .lt. 0d0) dpdr = dabs(dpdr) 

          a2  = dpdr + pp(i)*dpde/rp(i)/rp(i) 

 

          if (a2 .le. 0d0) then 

            write(*,*) ' ' 

            write(*,*) ' Negative squared sound speed!' 

            write(*,*) ' i    = ',i 

            write(*,*) ' dpdr = ',dpdr 

            write(*,*) ' dpde = ',dpde 

            write(*,*) ' pp   = ',pp(i) 

            write(*,*) ' rp   = ',rp(i) 

            write(*,*) ' a2   = ',a2 

            write(*,*) ' ' 

            stop 

          endif 

          ap(i)   = dsqrt(a2) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

90 

 

        enddo 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Estimate mixture temperature Hayes-II/JWL EOS only 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

        item = 0 

        if (ieos .eq. 3) then 

          item = 1 

          dtkmx = 0d0 

          denmx = 0d0 

 

c First temperature estimate 

          do i = 1,imax-1 

            if (zp(i) .gt. ztol2) then 

              omz = 0d0 

            else 

              omz  = 1d0 - zp(i) 

            endif 

 

            denm = cvs*omz + cvg*zp(i) 

            if (denm .gt. denmx) denmx = denm 

 

            de1  = 0d0 

            de2  = 0d0 

            de3  = 0d0 

            de4  = 0d0 

            de5  = 0d0 

            de6  = 0d0 

 

c           if (zp(i) .lt. 0.999d0) then 

            if (zp(i) .lt. ztol2) then 

              rs  = omz*rp(i) 

              de1 = t4*(((rs/r0)**alfa) - 1d0) 

              de2 = beta*(1d0 - r0/rs) 

            endif 

c           if (zp(i) .gt. 0.001d0) then 

            if (zp(i) .gt. ztol1) then 

              rg  = zp(i)*rp(i) 

              de3 = aj/rh1*dexp(-rh1/rg) 

              de4 = bj/rh2*dexp(-rh2/rg) 

              de5 = aj/rh1*dexp(-rh1/r0) 

              de6 = bj/rh2*dexp(-rh2/r0) 

            endif 

 

            numr  = eip(i) - omz*(de1 - de2) 

     &            - zp(i)*(de3 + de4 - de5 - de6 - qdet0 

     &            + e0cr) 

  

            dtk(i) = numr/denm 

 

c           write(*,*) ' zp  = ',zp(i) 

c           write(*,*) ' de1 = ',de1 

c           write(*,*) ' de2 = ',de2 

c           write(*,*) ' de3 = ',de3 

c           write(*,*) ' de4 = ',de4 

c           write(*,*) ' de5 = ',de5 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

91 

c           write(*,*) ' de6 = ',de6 

c           write(*,*) ' numr = ',numr,' dtk = ',dtk(i) 

c           pause 

 

            if (dtk(i) .lt. dtkmx) dtkmx = dtk(i) 

          enddo 

 

c Check the temperature difference (is T < T0?) 

          if (dtkmx .lt. 0d0) then 

            item = -1 

 

c Calculate the internal energy correction (fwded to next time level) 

            e0cr = dtkmx*denmx/eta 

 

c Apply the temperature correction 

            do i = 1,imax-1 

              omz    = 1d0 - zp(i) 

              denm   = cvs*omz + cvg*zp(i) 

              dtk(i) = dtk(i) - e0cr/denm 

            enddo 

          endif 

 

c Calculate the corrected temperature field 

          do i = 1,imax-1 

            tk(i) = tk0 + dtk(i) - dtk(imax-1) 

c           tk(i) = dtk(i) 

          enddo 

 

        endif 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Update particle properties and positions 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

        if (ipar .eq. 1) then 

 

          do np = 1,npar 

 

c Compute Reynolds number 

            ra    = rp(pcel(np))*zp(pcel(np)) 

            delu  = up(pcel(np)) - pu(np) 

            adelu = dabs(delu) 

            if (adelu .lt. 1d-10) adelu = 1d-10 

            rep = dip*ra*adelu/mu 

 

c           write(*,*) ' rep = ',rep 

 

 

c           if (rep .le. 0d0) then 

c             write(*,*) ' ' 

c             write(*,*) ' Rep <= 0!' 

c             write(*,*) ' cell = ',pcel(np) 

c             write(*,*) ' rp = ',rp(pcel(np)) 

c             write(*,*) ' zp = ',zp(pcel(np)) 

c             write(*,*) ' ra = ',ra 

c             write(*,*) ' delu = ',delu 

c             write(*,*) ' adelu = ',adelu 

c             write(*,*) ' rep = ',rep 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

92 

c             write(*,*) ' ' 

c             stop 

c           endif 

 

c Compute particle accelerations 

            if (idrg .eq. 0) then 

 

c Spray drag law 

              if (rep .lt. 1d-10) then 

                cdp = 0d0 

              else if (rep .le. 1d3) then 

                cdp = 24d0/rep*(1d0 + (rep**c23)/6d0) 

              else 

                cdp = 0.44d0 

              endif 

 

              pa(np) = c316*mu*cdp*rep/rop/rdp/rdp*delu 

 

            else if (idrg .eq. 1) then 

 

c Rocket drag law 

              if (rep .lt. 1d-10) then 

                cd1 = 0d0 

                cd2 = 0d0 

              else 

                cd1 = 24d0/rep + 4.4d0/dsqrt(rep) + 0.42d0 

                cd2 = c43*(1.75d0 + 150d0*alf21/rep)/alf1 

              endif 

              if (alf2 .le. 0.08d0) then 

                cd0 = cd1 

              else if (0.08d0 .lt. alf2 .and. alf2 .lt. 0.45d0) then 

                cd0 = (0.45d0-alf2)*cd1 + (alf2-0.08d0)*cd2 

                cd0 = cd0/0.37d0 

              else if (alf2 .gt. 0.45d0) then 

                cd0 = cd2 

              endif 

 

c Mach correction 

              if (imach .eq. 1) then 

                mach = (adelu/ap(i))**4.63d0 

                cdp = cd0*(1d0 + dexp(-0.427d0/mach)) 

              else 

                cdp = cd0 

              endif 

 

              pa(np) = c18*pi*dip*dip*cdp*ra*adelu*delu/p0mas 

 

            else 

              write(*,*) ' ' 

              write(*,*) ' Unknown drag law.' 

              write(*,*) ' ' 

              stop 

 

            endif 

c           write(*,*) ' rep = ',rep 

c           write(*,*) ' cdp = ',cdp 

c           write(*,*) ' pa  = ',pa(np) 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

93 

c           write(*,*) ' ' 

 

c Compute particle velocity 

            pup(np)  = pu(np) + dt*pa(np) 

 

c Compute particle position 

            pxp(np)  = px(np) + dt*pup(np) 

 

c Set default particle temperature 

            ptkp(np) = tk0 

 

c Update particle heat transfer and temperature 

            if (ieos .eq. 3) then 

 

c Compute the Nusselt number based on particle Reynolds number 

              if (rep .le. 2d2) then 

                nup = 2d0 + 0.106d0*rep*crppr 

              else 

                nup = 2.274d0 + 0.6d0*(rep**0.76d0)*crppr 

              endif 

 

c Compute the heat transfer coefficient 

              hp = tcon*nup/dip 

 

c Compute the heat transfer coupling term 

              pq(np) = hp*pi*dip*dip*(tk(pcel(np)) - ptk(np)) 

 

c Compute the particle temperature change 

              dtp      = dt*pq(np) 

              ptkp(np) = ptk(np) + dtp 

 

            endif 

 

c Check particle bounds 

c           if (pxp(np) .lt. x1) then 

c             pxp(np) = x1 

c             write(*,*) ' Particle ',np,' out of bounds.' 

c             stop 

c           endif 

c           if (pxp(np) .gt. x2) then 

c             pxp(np) = x2 

c             write(*,*) ' Particle ',np,' out of bounds.' 

c             stop 

c           endif 

 

          enddo 

        endif 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Update time and iteration number 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

        n    = n + 1 

        time = time + dt 

 

        write(*,*) nstart+n,' ',dt,' ',time,' ',item 

        write(*,*) 'pum = ',pum 

 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

94 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c Solution and restart file output 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

        if (mod(n,ndmp) .eq. 0) then 

          nfil = nfil + 1 

 

c Solution file 

 90       format('sol_',i3.3,'.data') 

          write(filex,90) nfil 

          open(22,file=filex,form='formatted') 

          write(22,*) '# ',time 

          do i = 1,imax-1 

            xc = c12*(x(i) + x(i+1)) 

            write(22,72) xc,rp(i),up(i),pp(i),zp(i),eip(i),ap(i), 

     &                   rxr(i),tk(i) 

          enddo 

          close(22) 

 

c Particle file 

 91       format('par_',i3.3,'.data') 

          if (ipar .eq. 1) then 

            write(parex,91) nfil 

            open(22,file=parex,form='formatted') 

            do np = 1,npar 

              write(22,*) pxp(np),' ',pup(np),' ',ptkp(np) 

            enddo 

            close(22) 

          endif  

 

c Derivatives file 

          open(22,file='deriv.data',form='formatted') 

          do i = 1,imax-1 

            write(22,*) i,' ',derv(i,1),' ',derv(i,2) 

          enddo 

          close(22) 

 

c L/R Z files 

c         open(22,file='zlzr.data',form='formatted') 

c         do i = 1,imax 

c           write(22,*) i,' ',zzl(i),' ',zzr(i) 

c         enddo 

c         close(22) 

 

 

c Restart file 

          open(40,file='restart.data',form='unformatted') 

          write(40) nstart+n 

          write(40) nfil 

          write(40) time 

          do i = 1,imax-1 

            write(40) rp(i),pp(i),up(i),zp(i) 

          enddo 

          close(40) 

 

        endif 

 

c Reset arrays 



Distribution A. Approved for public release, distribution unlimited.  (96ABW-2011-0548) 
 
 

95 

        do i = 1,imax-1 

          r(i)  = rp(i) 

          u(i)  = up(i) 

          z(i)  = zp(i) 

          ei(i) = eip(i) 

          p(i)  = pp(i) 

          a(i)  = ap(i) 

        enddo 

 

 92   format(2x,d15.9,2x,d15.9,2x,d15.9,2x,d15.9,2x,i5) 

 

        if (ipar .eq. 1) then 

          do np = 1,npar 

            px(np) = pxp(np) 

            pu(np) = pup(np) 

            ptk(np) = ptkp(np) 

 

            if (idbgp .eq. 1) write(110+np,92) time,pxp(np), 

     &                        pup(np),pa(np),pcel(np) 

 

          enddo 

        endif 

 

c       pause 

 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

c End of solver loop 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

      enddo 

 

c Termination codes 

      if ( time .gt. tend) then 

        write(*,*) ' ' 

        write(*,*) ' TIME > TEND.' 

      else if (n .ge. nstp) then 

        write(*,*) ' ' 

        write(*,*) ' N > NSTP.' 

      else 

        write(*,*) ' UNKNOWN TERMINATION CRITERIA.' 

      endif 

 

c End of main program 

      stop 

      end 

 

 



 
DISTRIBUTION LIST 

AFRL-RW-EG-TR-2011-159 
 
 
 
Defense Technical Information Center            1 Electronic Copy (1 file, 1 format) 
Attn:  Acquisition (OCA)                                 
8725 John J. Kingman Road, Ste 0944 
Ft Belvoir, VA  22060-6218 
 
EGLIN AFB OFFICES: 
 
AFRL/RWOC (STINFO Tech Library Copy) 1 Copy 
AFRL/RW CA-N                                                         Notice of publication only              
     
 
AFRL/RWG    - 1 Copy 
AFRL/RWM    - 1 Copy 
AFRL/RWA    - 1 Copy 
 


	Cover
	Notice
	SF-298
	frnt
	body
	Distro



